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 PREFACE

Th1s Outhne has been prepared w1th three fundamental ob-'
]ectwes in mind: 1st, to furnish enough of the standard tools of
the Calculus to. enable the reader to make computiations in the \
mam branches of the subject met with in a first study; an,, fon"
.present some of the simpler proofs and derivations so #8)to’
encourage the serious student in his efforts toward obtaitiing at.:
least a partial understanding of the basic principles hhvolved
and 3rd, to make the preséritation in a self-explanatory outlme
form designed for self-instruction.” :

The Caleulus is, in essence, a study of mﬁ@lteslmals and of
limiting processes —— entirely new ideas toéhe person who. has
had onljz limited training in high school m\athemat.lcs Tt would
require many books the size of this to- take a full and détailed
analysis of ‘these operations. ThesTabulated Bibliography,
keyed- to some of the standard first volumes on the Calculus, -
should be of help to the student'who is eager to delve deeper mtcr_. .
the abstract theory than tI@s Ouitline is prepared to: carry him,

- Even the mathematicdlly inclined will have difficulty in his
study of the Calculus Unless he has a fair understanding of the
usual subject mattér?found in a freshman college course’in
Algebra, Tr:gonmﬁetry, and Analytic Geometry. - For a quick
review of this/material -and as a convenient source of infor-
mation, Chqpter I is devoted wholly to Reference FormuIae
and Graphg'periaining to these fields, -

_ Thmughout we have made an attempt not only to ﬂlmmnata
the’t.hscusemns in the main body of the Outline but alsoto. sup-
port’ the worked-out Illustrations by means of -clear: d
accurately ‘drawn figures and to present. typical and ‘st
; roblems in the Exerc1ses for ‘which answers. are §

.;and abphed inathematms and they, along w1th the ex
-questmns in Appendlx A, should furmsh the student
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CHAPTER |

REFERENCE FORMULAE AND GRAPHS
A

. Bagic Formulae. In a study of the calculus, the stucleﬁt
wiil ma constant need of a list of formulae of reference.q \ \For
this reason we begin this Outline with a selection of tl&e ‘more
important {ormulae taken from the fields of algebray géometry
trigonometry, and analytic geometry of two and fhree dimen-
siome. . We also list the equations and graphsy 0}\many of the
slandard curves, a knowledge of which will be of great aid to
the student. D v

2. Algebra. \ ‘\
(1} Quadratic equation. The root§ solutlona-,.) of the gquad-
ratic equation ax? 4 bx -k ¢ = 0 aré
— b~+ \m
~\ v Za
The expression A = ’\ 4 a¢ is called the discriminant.
fay IfA > 0, the rq‘&t:, are real and distinct ;

(b} If A = 0, th@yoots arc real and equal;
oy Ifa < 0 the ‘roots are complex,

(2) Far mzal nor‘azwn The symbol »!, called “# factorial,”
stands fai\thfh product of the first » (positive) integers.

m\ Z1.2.53..q; (b) 0! = 1, by definition,

:“\. N
7 Binomial theorem. The expansion of (g - &)», where »
152 positive integer, is

(@) (g + b)v = g + na"b + ﬁ(”ZT_ D

L un — N~ 2)

AT

ﬂ(?’l - 1)'&} - 2) (?E -7+ 2) an—rtifr-1
{(r = 13!

an Eb'ﬂ

an—:&bs ,4_ -

+
o b
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(b} The rth term in this expansion is

np —Lin -2y —7 +2)

E (zr-.—.l"—lbr—l‘
(r — 1!
(4) Logarithms.
(@) If &* = =z, then, by definition of logarithm, log, x = b, . \i\
1 A
i =—, N:x
{b) logs & fog. 5 x \\
To any basc: ) \\
(¢} log MN = log M 4 log N, \s
(dy log M4 = Alog M, \\w
(e} log lﬁ—r = log MN-' = log M — log N\
R4

() log VT — log Mn — -llog M. \{\

3. Geometry. N

(1) Relation belween deg?ge measwe and mdmn measure:

360° er radians = 1 revolution,

23 ’lfensnmtzﬁhyormu!ae Let r denote radius; 4, central
angle in I'adld,Il‘S

WS, are; b, altitude; length of base; s, slant
height; A, asea of base.

N
0 CIRCUMFERENCE  AREa VOLUME
(a .’@Ie 2y 1
(R €Circular sector S =10 1
»\ (2] Triangle 3bh
/ (d) Trapezoid 3 + Bk

(e) Prism Ah
(1) Right circular cylinder

(limiting case of a prism) 27rh Al = 712k
&) Pyramid 1 4k
{hy Right circular cone

{limiting case of 3 Dyramid) BIS = Ve T 1oy
(i} Sphere dare

Loprs
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4, Trigonomeiry.
(1Y Fundamental identilies.
mr st bcosty o= 1, (b)Y 1 +tan’x = sec?x
ey 1 ootz = cectyx
{5 Reduction formulae rule:
Isf Any trigonometric function of the angle (A% + a)‘is\
1o {4:) the same function of e, if £ is even, and is equ&l to

the cofu‘lcf ion of e if kis odd,

The 47 sign is used if the original qus\lt}ﬂ of the

original angle (fe; + a) s plug; the “ -7 mgﬁ\& used if the
- 2 NS
origimal function is negative.  The sign of I\hL original function

of /.

- Y
s+ (_:-.-) is datermined by the h‘;}&li" quadrantal conven-

. \ J
To summarize S
i‘ 'iﬁe' function of e, if & is even; co-
X % function of w, il kisodd. Usesign

TI’
Any function of{ i (") =&
2 .. . T,
of original function of R )

O | - V2
_ O ‘
120 Funclions of thelsuin and differeice of lwo angles.
(2 sin {x + ).s s x Cos ¥ 4 cod xsin gy,
hy cos (x4 )' w003 4 Cos ¥ F osin xosin y,
1‘~: Larn 40 tan vy

(o) fan (g = ST lo= Tl

(\?i YT T lan s tan v

s

fiﬁ \\ffzpie angle fo-rmu-iae.
g‘;{{‘uun 2x = 2sinxcosx,
\\(‘.'; cosZx =cosfy —sinfx =2cos'r —1=1-Zsin?y,
/
2tanx

e} tan 2 x = -
Lo 1~ tantx

() sinZ = _1;20139

x i1 4+ cosx
ﬁe & [ iy
yeosz =N
0 tan ¥ Al —cos® 1 -—cosx _sinx
( anz \l +—cosx sin x 1+ cosx
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(D) Sum and product formulae.

(a} sin x - siny = 2sin $(x 4+ ») cos 31(x — ¥,

bl sinx —siny = 2cos $(x + ¥) sin L(x — ),

c) cosx Jcosy = 2¢co8 y{x ++ ¥) cos L(x — 3},

d} cosx —cosy = — 2sin §(x 4 3) sin 3(x — 3),

‘c) smxsiny = %c?s (x —3) — % cos (x + ), ,\\'\
() sinxcosy = Lsin (x —9) + Lsin(x + ), A
(g) cosxcosy = fcos{x —3) + 2cos (x + y). N

A\
O

{6) Formulae for plane triangles. Let q, b, ¢ bg,sj.dés; A,
B, C opposite angles; s = &g te “@-perimeter;

Il

—

s — a)ls — b)(s — ¢)

Ty , radius of theNmscribed circle;
1 S \
: - . 7
R, radius of the circumscribed circle; K{area.
N n\\
2y Law : "a—*"—'?—=i\§\—;=2R
ta) Law of sines; snd "B - &oe s

by Law of cosines: @ = g + 6852 be cos 4,
_it) Law of langents: z%g ?% ;;E ;11 __L._g,
K\ ¥
{d} Tangent of half grigle: tan § 4 = T
¢ &\J . abe
() Area: K = Sebsin ¢ — Vi T A6 S HE T = s = abe.

b, Plane,ﬁgaﬂ”ytic Geometry.
(1) Disttwice between two points: 4 - v

Te = x) (3 — s
O Ny
:j'?,{@ﬁpe of line through two poinis: m =221

\ Xy — %1
“\Jf';s\j Angle belween two lines:

\> (@) tan #, = ﬂﬁ——-—ml—, where 4., designates the angle from line 1
1+

to line 2 (counterclockwise); '

() cosd = A, + PATRY

the first Line and the x-3xis

the first line and 1ha y-axis,

here ), is the cosine of the angle between
and g is the cosine of the angle between
and similarly for ), and Ha,

(0 Two lines are paraile] if ;= (slopes) or if A, 4
mpe = 1 {direction cosirles), :



§ 5] PLANE ANALYTIC GEOMETRY 5

(5 Two lines are pberpendicular if m, = — 1 (slopes) or if
- ugz = O (direction COslTes), 7y

() Forus of the equation of @ straight line and their graphs.

{(m] General: ax + by +¢ = (,

) Twopoint: S— 3 _ 3
r — X X

A’Y
| .
Fic. 1 o8 F1c, 2
~:s:{’
&
O
w
\
X X
Fig, 4
= mx + b,

. Y
(¢} Intercept: p —% =1,
(£) Parallel to y-axis: x =k
(¢) Paraliel to x-axis: ¥ =&
(ly) Normal form: x cos 0+ ysing — p
Note that (h) could also be writi
where ¢ is the angle between the nor

=0,

En xcosd f ycose — p = Q,
mal and the y-axis. Or, writing
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X =cosf, p =cose, wehave ha +~ uv — p = 0, » and p being direc-
tion cosines of the normal fo the Hne., Nole that 32 + ¢ = 1.

iT)- To reduce the general eguation ax -- by -+ ¢ = 0 Io novmal
form divide through by £v'e® + 5 and choose sign opposite 1o
that of ¢.

(8) The distance from a line ax +by +¢ =0 lo ¢ f¢ m{

Pix, v) is given by N
:“\ v
d=PT bt D
=gt 4B O
(9) Standerd forms of ihe conte sections, \'\,\
O
{a) PaARABOLA \t\

) £\ - {h’ ki ol
& \
- X b4

Fic. 6
. ¥ =dpx =k =4 plx —k
" "Coordmates of vertex:  V(0, 0 v )V(k 4,;;( }
) “Coordinates of focus: Fip, O Fih _-, B
Equation of dircetrix: T==p - 1};;‘3, )
Length of latus rectum: L1/ = 4 i} LJ;’ ; f
=4p
(b) CircLE
Equation; xf 4 g ; )
. ) Y=l _ [N — b
Coordinates of center: C(0, 0 @i+ & B =T
Radius: ¥ C )

¥
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fa

Y

e
s

E IG. F;a\\og“&)
x &/
{¢) ErLirse v
v ” O
' VL))

] ! Ao
-~ AN\
5 ) TR Y
L LANY : i
! l\j‘ {—ute, o Flee, ol Q™ F F
: N\ .
! \\__ S L

L7
L
=
=
o
R

t 3
.\
e, 9{ Fre. 10
X2 o
T-T'Gufition x'\sl + J2 =1 ¥ _ ].'I{Ij - {-l__k.)j =1
aﬂ K tt b*
Uoordw}émsof»emces V(@,0), V(~0,0) Vikta, k), Vih—a, k)
woow(fg}hes of foci:  Flae, 0), F'(~ae, 0) F(h-+ae, &), F'h—ao, 1)
Coércmates of center: C(o, &) Cih, k)
\Equatlonq of directrices: x==+2 x=%°
£ €
Semimajor axis: a
Semiminor axis: b o
Eccentricity: o= Y& U <1

Length of latus rectum: LIS « 28
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(d) HYPERBOLA

o

Fic. 11

Equation:

Coordinates of vertices: Via, 0), V'(—uq, ())5\\‘\; +a k), Vik—a, k)
Coordinates of foci:  Flae, 0}, F'(— é}j'F{!zJ.—ae, k), F(h—ae, )

Coordinates of center: C(() QJ ”* Cik, K)
Equations of directrices: x eﬁ‘ . ¥ =h = g
Q> 5
Equalions of asymptotes: §~\y =z x y—k=x - B
Semltransxs%rae axis: a
Qemlc;o'l}ugate axis: b
E};\@ptnmty e = —a;— >1

% Length of lalus rectum: LL' = 2 b
R\ a

(é) Po‘ar equalion of a conic with focus at the pole and directrix
serpendicular to the polar axis.

o=t —_.J’:._ep
1Fecosd

6. Solid Analytic Geometry.

{1y Distance befween two poinis:

d=+(x; — ) O — )+ (2 — 2
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(%) Dirveciion cosines of & line: », u, v

A =C05a 4 =cosf, r = Cosy,

e, B,y heing i he angles made by the line and the posm\»e direc-
tioms of the coordinate axes %, 3, 2, respectively; and a2 -+ T

¥ .

&1 Direclion numbers g, b, ¢ are proporticnal to the direc-
tlon cosines when a = En, b = ku, ¢ = Ay, ' {\
v Fgunaiton of a plane. A \

l’ ’
() General: ax +bv +cz 4+ d = 0, \\

o, &, ¢ are direction numbere of a line perpendicular to the phne,
3

4 o
\\
\ W

Nees

FiG. 14

23] Interceptz~?€f+ 2 4=

\ ¥/ ¢

{c} :Jonn&&form ?n: duy vz —p o= 0.

To }:e(\[hce the general equation ex + by + +ez-+d =0 to
noy Al form divide through by - Va? + B -+ ¢? and choose
SIEOGpposite to that of 4:

i
ax +by +ez+d _
+ Ve B o

{9) The distance from a plane ax + by +cz+d =0 o @
pont Pix, y, 21) is given by
ax, + fmi—i— d

“Vaet R et

D=
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(6) Equations of @ line.

() Tntersection of two plancs:
I[a]_x - bl} + [ "l_ dl = 0,

1%1‘ By + €2+ do = 0.

Tor this line _ )
\’H’V=|'b1 Clll__'_|al el L U1l|_
B |EJg C-g'i‘ K Cglb!ag bg_'i
(b) Through (s, 31, z1) with dircction numbers @, b, ¢ \\\
x— % _¥y—¥ _toA O\
= T = — = N 3
i+ "
. . e b ‘ ¢ ’ i:\'\
This is sometirmes called the symmetric form. A\
A
W

{c} Through two points:

X = _ ¥ h K
_ 1\\

Xy — Xa Meoo— M

Note that here Ny
Nipar = (xg — %) (e —\\\?I}\;‘(’zg -z

(T) Angle befween fiwo lirtes. X QO
cosdl = }\1}\2 - #1#9%&’{?}2.
™

~
N
\ e

The lines are parallel if ¢
}\1?\9»"]\: :(11.:‘2 4 = 1.
The linez are perp{;a:@tular if
g\'\\"\ﬁ\z T pale T+ e = 0.
(8) The angldDsiween lwo planes is given by the angle between

norrals 1o i€ planes.
(9) Standerd jorms of the quadric surfaces.

Fia. 16

(b) ELuipson: i— + :;J + é =1

Fic. 15

(a) SPHERE: x* + 4% L 22 = 92
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o .l.
(c; ¥yrErsoLOID OF ONE (d) Hyygréaowm orF Two
SHEET; LBTS:

E_Y_F_
a'.i b;! i

Fic, 19 Fig. 20
&) ELLIPTIC PARABOLOID: {f) HYPERBOLIC PARABOLQID:

2 y2 %2 3
&5+53-cz = s = 62
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Z

v G

Fic. 21 N Fre, 22
N\
() ELLirTic CONE: (h}':.ﬁIZLIPTIC CYLINDER:
2 ¥ _ 2, & 2Ly
ATE = N at B

"‘

N\

Note that the cquatidn'of the elliptic cylinder contains only
two varlables and KQ@JEI?@ cylinder extends in the direction of
the axis of the missiflg variable. This is typical: the equation
of any cylindrigalSurface whose elements are parallel to one of
the coordin,a\u:a}&cs will not contain the variable of that axis.

7. P@Tﬁiples of Graphing. Since it is essential that the sty-
dentof the calculus have a sound basic working knowledge of
the principles of graphing both in two and three dimensions,

<\‘é"now give a quick review and summary of them. Later to
these algebraic and geomeiric methods will be added those
developed in the calculus.  The combined set of tools will malke
curve tracing a more interesting and a lighter task.

To plot the function 3 = f(x), x- and y-axes are taken at right
angles (reclangular coordinates), The horizontal axisis usually
designated x. A point 4 (sce Fig. 23) is placed in the plane
above a point x, on the x-axis at a height which corresponds to
the value ; of the function. The coordinates of A are x; and
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1'11, ) or simply (x5, 30). The graph of ¥ = f(x)
obtained by joining consecutive points A4, B, etc.

¥

{

! .

}r AlmL)

i 4-\'\'?::::,)’" ; 7 ° A(P;ﬁJ

| i -
\.‘\i‘?’/’ fin g N
-~ ! i ) , _

| i £

! & X 7N\

! \/

i . P

T16. 23 Fia. 24\
¢t

To plol the function p = f(8) polar coordinaled are indicated
feee iy 2-1‘ For a given angle ¢ fladla"l\p 18 determinéd as
a distance from the pole (origin) along théltadius vector. The
poinit ‘1. h a8 cooromabe&. {p, 8); A 'ﬁm‘mb coordinates (- p,
% + ). The graph is the locus of poﬁn\tb which satisfy the rela-
Li(}l" o= Fii, .

either reclangular or pola; coorchna‘rc% parametric equa-
ight be used: x = fildy = git); or p = f{f), § = g1,
CF Case corn eupondmg\vqlhea of x and ¥, pand ¢, are deter-
mined by ass E:,I‘,Il]g ar:;rrt}m} valyes to the paramcter {; these
numor:\r pairs (x, ), %%, &) are then pl(,ued as belore.

The main 1‘tems‘ Qf consideration in the lracing of a curve
are: .

(13 ff?fewrfq,‘a‘ I‘Lot the points where the curve crosses the
axes, ¢
.2) & %ne&;

(a)«Bhe curve is symmetric with respect to the x-axis 1f the
eq.xc"l‘t; 01 remaing unchanged when - ¥ 1s substituted for — v,
\/ bj The curve is symmetric with respect to the y-axis 1f the
equation remains unchangcd when — x is substituted for + x.

{¢) The curve is symmetric with respect to the origin if the
quation remains unchanged when — x and — v are substi-
tuted for 4 x and + y respen,tlveh.

3} Exien, _

{a) Determine whether the graph lies whoily in a finite por-
tion of spac

\



14 REFERENCE FORMULAE AND GRAPHS [Ch. §

(b} Indicate the points of discontinuity.
(¢) Determine and sketch the asymptotes.

Z A
Xy
~
Y —e Ay
N
R
X oW
Fic. 95 '\{ Fia. 26
O
N
9
‘f.\'x )
‘,,’5’« ¥
2 N\ o /r
N\
RS
=g k& i
\<&
Qe 1 Fic. 28

N
To ﬂb’t’ the surface represented by the function z = f{x, ¥)
wegndy take (rectangular coordinates) a right-handed system
,,\(z)ijé‘kes as in Fig. 25 or a left-handed system as in Fig, 26. Or
N\ evlindrical coordinates may be indicated (Fig. 27) where the
given function is of the form z = f(p, 6}, Again a sphericai
system of coordinates is used (Fig. 28) where the function is of
the form » = ji4, ¢). No matter what system is used care must
be exercized in the choice of units. For example note that in
Fig. 26 the » and the z units are geometrically equal in fength
since these axes be in the planc of the paper; but the v unit is
indicated by a smaller segment since there is foreshortening in
the g direction. i s worth mentioning ihal the surfaces drawn
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pith sl he Intrue perspective bul neveriheless will look somelhing
ective figures.
items of consideration in the sketching of surfaces

fnlercepts.
{(a; Pict the points where the surface crosses the axes,

{ixi Flot the traces in the coordinale planes.

(o} Delermine the character of the traces in planes paraliel§
to tie coordinate planes even though th(:ae CUrves may notg be

included in the graph. ,'\ "
(5) Symumelry, D
The surface is symmetric with respect to the ;t} e 1f the
equation remains unchanged when — z is subatlt for + 2.
Shmilarly for the other coordinate planes.
(8} Euxfent, , \\;

Vet ®

5. viap‘is for Reference. We hdve) alreﬂdy drawn the
graphs of certain standard equations étﬁdxed in analytic geom-
etry, ‘The student should be falmlm‘ with them and with the
graphs of the trigonometric funoﬁrbn% {Figs. 29-40}. He should
also develop at least a passingidcquaintance with certain other
equaifons and their graphd as he proceeds in his study of the
caleulus, We reproc@l{éj?hese in Figs. 41-66.

. \
O
.'\}
{ Y
\wo
- N { _________
¥ O N
, gt r]
\\ S
R 1 "
1N ' ___‘_“": ‘-“'___-"‘___
‘s\. ad 1 i) -
2\, J y

|
!
| -
I
|
|

2= .

-
-

|

1

i

j
I

|

|

Fig, 28 y=uinz Fig. 31 y=sin"lx
Fic. 80 y=escg=———- Fig. 382 y=csc lo=====

~
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16

N
/.
%:5?

4
"8k

-1
g, \3’%\

g, &

O

\/

T -
[ ] [
/ I
\\ —
el e i
- e mow
- e
i 8o
[ 0 m
R [ <HE S I
Tt ENEN

g, 33
Fre. 34

Fig. 89 y
Fra. 40

tan ¥ ———
COL L ——mmm

Y
k)

Fila. 37
Fig. 28
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Y
/ Y
/
/
i x
.-';!
:’;.
{
f p
i —
i'f . M
[ /{C/\ ’
o)
Fic. 41 The Logurithwmic Curve Fic, 42 The wnential Curse:
# = log = y 2;( £,
&)
RS
N °
N
N
Q&
2
A
X O
e Y
o\
\;
v ,’{/
©
[ O

16,43 Paraboln Tungent to Awes:

1 N T
xF - yF = gi,

Frc. 44 The Rectangular Hyperbola:

.-:1.
v <
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Y

¥ = arh

™ Za—

, Fic. _4? The Cyeloid:
T=ald —sing), y = a{l — cos 4).
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¥
|
B N
¢ C '\
; ; X
;f o T & S p \\
f B ,i\‘
j o5 M x A\
i D,B Y \
/ :’\:\M‘
'\«',/
AN
N\
Fi. 48 The Hypocycloid:, (3
v
= (¢ — B} oz § +bms ""\Q&,

= (@ = b)sin? — baln 2= Py,

FIG. 4% The Epieyclodd:

:cr(a-}-b}cos&—bcosag‘be,

= (¢ + D) sing — hsin “_}j—bn
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Y
g
e3 )
u X
i
¥16, 50 The Astroid: Fig. 51 The\biﬁw.gon of Pusual:
(Hypoeyeloid of four cusps) pmB — a cos g,
N Ry (cmd-ﬁf\zq%‘b —a. See Fic. 52
NV
« \J
N
5"5‘
™
&N
- A ‘
The figore iz drawn for 5= Ly “":‘{,_fé? =} |
FiG. 52 The GGrdvoid: Y16, 33 The Logarithmic or Equiangder Spiral:
e =ail -z-"gog &). g = aehl,
$ Z
N\
AN

R\
O

V16, 34 The Spirol of Archimedes: p = qp,
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¥
P e
a
o—— @ o &
x (jx\\
O

Fig, 55

The Witch of dgnesi:

)

{*;‘vf?zc. 568  Folium of Descartes:
o
4

¥ 4yt — By =~ 0.

Y16, 87 The Probubility Curre:

§ = et
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¥
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F1¢. 88 The Catenary:
z T
y=2{ex 4 5a).

X

N
rio o - asins

N\¢

TG, 62 Three-Leaved Roge:
po=adcosdd.

F16. 61 Three-Leured Rose:

f = a3znl s

hS

Fic. 63  Four-Leaved Boge:
po=qgin?eg,
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F16. 64 Four-Leaved Rose: ,\{\,\
po=acor?g, \Y
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F1e. 63 X&é\Lemm?cafc of Bernoulli:
,c- =@ cos 28

2 = a€$Ve0s 29, y = asingveos A,
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F16. 66 Domped Oscillation:
4 = e gin .



CHAPTER 0

FUNCTIONS AND LIMITS A

9. Functions. A variable is a quantity to which arbltm%\
values may be assigned. Let x be such a variable and let “the
quantity y depend upon x. We call y a function of x and say
thal x is the independent variable, y the dependent\vvldbk or
function. Abbreviated, these statements are wr{cten

= fx). N\

This 18 read “y 1s a function of x.” Th,e',\élﬁiue of the function
at the point ¥ = a is written f{@). ¢ N\

Many notations are used to 1ndlc£‘§‘fhat one letter is a func-
iion of another: v = glx), w = F‘L\g), = i), ete. If a vari-
able z depends upon two mdepeﬁdent qu’mtme&. x and ¥, we
write z = f(x, ¥}; or agam*y, = f(xy, X, %5, -, %) Where visa
function of # variables. {\

¢ \&} EXERCISES
LA = ) =1, 53) = 9, 5(—2) = 4.

2 Iff(f) =s—:\.$,'j’(l) = — ..]:r f{z) — ]-_' f(“" 3) _ é‘
> {@5 = 7Tsinx. g(1) = 7sin 1 = 7 5in 280 g(g) =T

4‘\1 0(x) = 27, 8(3) = 2% = &, 8(— 1} =7 n(x/?} =7
1 3
'“\;:\,5 U Fx) = "+ CF(3 1) — qig'i[l F22) =7 Fla2) =7
\/ 4. If!f[}')—dlog,y I’l)—O}f(&)—3log2,h(1~—x)=?

T. LEf() = 0 + tan s, f(0) = 0, 1 )—?,f(l):?

8. 1f7 = §—> 72,0 = ng_lmaa) “’T3Z(y,x)—?

9. Ify N tX T o iy 1-140 -
Y T Y L .2_1+_0_0,y(2,3,_0)=;
L =1 — g ap L I1Y 1

10, Ifelt) =1 £+3!""J)_1_EE 'i ()} =?

24



LIMITS 25

A tunction fix) is said to approach b as a limit,
ches ¢, 1 the xalue of | f(x) — b| becomes and
s any prcasqmnpd quantity., This is sometimes

written | <ewhen ¥ - ¢|<s  Again the notation
Fix) =5, - %= @ is used; this is read “f(x) approaches &
when 2 128 2" The notation most widely adopted in

books on the caleulus is, how aver, s &N\
AN
im f(x) = b; O\
r—+a A4
i \
this is reas # the limitine value of fix}, as x approaches G, equals
b AN\ 3
The Ioliowing (heorems on limits are mportant \~
If1 ,mf = 5 and I}m #x) = ¢, then AN
G .\\'
(1) NmTfoe « i =8 = ¢ [The Hnilof a (finite) sum
e equalsithe sum of the limits.]
{2 L= [The‘ﬁm it of a product equals
wthé product of the limits.]
3) i S0 _ b 0 [’I‘hb limit of a quotient is the
Paaglyy o %\ quotient of the limits pro-
A N vided the limit of the denom-
“\\ inator is not zero.]

Derromion. 4 fun(,t\bn flx) is sald to be continuous at the

point q if Him ;.fs'y) = f fu), that is to say if the limiting value of

the func 11011 as 4 q,‘I‘pl'Odf"l'lGS @, actually equals the value of the
function ay tha @bint a.  (For example the function f(x) =

¥< 0, flx) \<“® x > 0, is a continuous function at the pomt
X = Okltlu.é‘hi’f aF =0 = f(0).) 1fHmf(x) = f{g) the function

e ]
15561.@1:5 be dm Unizmous atthe point q.  (For example f(x) = 2,
%0, 7 0) = 1, is discontinuous at the point x = 0 since
lm \6) = O hut ILO) = J_.)

T
A function is continuous in an intervel xy < x = xy If it is con-
Muous 4t every point in the interval,

I 5} and g(x) are two continuous functions, then g{f(x)] is
ontinuons and we write

@ Tim gi(e)) = eflim ()] = glf @)l



26 FUNCTIONS AND LIMITS

These facts are used in the evaluation of limits.
I'lospital’s Rule, Chap. VIII, §33 for further informaticn
regarding limits and indelerminate forms.)

The student should become quite clear in his own mind as {0

0 a0

the use and meaning of the three expressions = p First, zero

00
A
divided by a number e{s£ 0) is zero, Next conSLder o thu*‘ \b
shonld write 1im% =0 (no limit, infinite limit). The @@t C. iw
L0}

meaningless in that lorm; that is to say it is i fe‘rmmahe
For a quick arithmetic check of these facts cqg%;da writing

these ratios (Lac,h of the form é; = C) in thevform A = I
\¥;
\ v/

&’

\\

o 0 0. : '0
BG) =G o 0=a:C ~C 0(10

Then we have

‘s

a X
(6 il C, o a=0-¢C, - ('}“:' . (C can be equal to no finite
"\ number; € is infinilely

LN\ large), ic., % _—

(7 G=© or 0;=Q,:}', . € could be any number,
L\

N\ ie., g = jndeterminate.
There arg tl\’irce especially important limits that we should
consider be e turning to the subject of differentiation where
{hese 'QIIH{“ arc used. They are

&1 Tun =1, (x measured in radians);
“\ 9 T=r0
v 1 —Ccos x . .
A9 ?11_131[]— — = 0, (x mcasured in radians);

1
(10) m (1 + )7 = ¢ = 2.71828 ...

Now lim sin ¥ = 0 and hm ¥ = 0. Hence theorem (3) can-

r—0y

not he applied to (8); if 1t Wi ere applied we would merely have
(7) above (8) which would tell us nothing. That im S0L% = 1,

0 X



$10] LIMAITS 27
can readiiv be proved as follows. From Fig. 67 it is evident
that
= arca 0AC > area OBC,
104 -DA = itanx,
3 7% = § x, (x measured in radians, r = 1),
=408 BC = Lcosxsina /
Hence > X > CO8 Y §in A, R A\
or RS S 1, '\‘
cozx T oBnx O
% o
or again  cos x sin ¥ < | N
x cos x i
7 {'
o osin x . o
Since = always Hes between cos x and )@%h of which
approachies anity as x approaches zero, th%ezl})re lim =—= sin % =1
and the proposition is proved. e
&\:Y
\ ¢
: | : X
[ i 2
F1g. 68
. \
For “{Qgiwl‘l‘te
@ 1w cosy - Lo 08X ST gy,
N/ " 1+cosx  1+4cosz
therefore 1-cosx s’y , % positive.
¥
Hence i L7608 % oy, SO 2 = 0.
P x EE

A rigorous proof of (10} is complicated and is usually found
only in advanced mathematical treatises.

of values of the function (1 + x)i is prepared for values of x

However, if a table
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near zero, it will seem plausible that this limit does exist and iz
in the neighborhood of 2.7. The student should check, by log
arithms, the entries in the following table.

X | 2 i1 11 ,01 001 OOO —.01|—.60

2,2.000]2.594 | 2.705{2.117| 2 §2.?32| P

¥ =

From this information we sketch a portion of the graph of '118'
function (Fig. 68). Laler, in Chapter XVII on exparsm} >
functions in infinite series, more information about the nunjbﬂr ¢
will be gained; bui the earncst student will find pl@fu now

expanding (1 'r,)f by the binomial theorem, thn}kmrf of = a°

an integer Let x approach zero by t'lkmc\p the successive
values L, 1, 1, <. and consider what ha')perzs in the limit.

EXERCISES :}‘
1 hmis2 — 1) =0 lim (rr— — 1 = ‘1_.

r—l =

‘ 4
o1 1 _ ™
2o lim " =0 lim = =w {infln:i L
ame ke i uvun it},
LN\ 3.58_4
3 51"{13!_5 -2 1Lm%:+_4:hm { fg_ng.
t—y ¢ 4 2 2{ —d 1= 'i- 2 L—vun 1 .- 2
K -5
4. Tim O f,;t_ Sl T e e
.r—ru'lt’," B fix +EC€ CiseAxr+ Byt + . - C A
hm tdnx\- ilm sinx 1 = a6 (inflinite limit).
—i\ tUa),
8. *l\tu\s,m =10 llmit; limn sin L. ne limit; lim x sin 1_ 0.
\..,v-;,a-n =1 & =l i
,.\j} J1!_13](’*‘ =g lima — L lim zx1 - 16,
\ P i
N8 dim 2= lim 2 = 0: lmah = 1,
L—s T =1
9, lim et =7 lim* S =7
— i—y 2
10, im ¥ - ¥ oy i ¥

FE i ¥ y—0x -y



CHAPTER it

THE DERIVATIVE

The essence 0[ Lhe differential 2\
\\

fJ.uLT.lO*’] M= f’x) The value of this functfoﬁ dt
T =1x,i5 5 = fixe, and at & = x, 18 3 = f(x). LSE&Fag 89.)

Let us ‘ahpr“Q %0 a fixed point but consider %, as a variable
point and 1@"‘\’{1 approach x,. The derivative of f(x) with respect
lo x at ih{\? it xy 18 defined as

N>y fim Flx) — flxo),
\/w n—am X1 Xo

Since x,is an v point, we might drop the subscript and talk about
the derivarive of f{x) with respect 1o x (at any point x) as being

i FOED = I
n—x X — X
More frequently the following notations are used. Let
Y- x = Ax, f(x)) — f(x) = Ay; Ax and Ay are called incre-
29



30 THE DERIVATIVE

ments of the independent and dependent variabl_es respeciivaiy,
Then the derivative of ¥ with respect to x is written
Ay flx 4+ Ax) — (1)

lim = = lim
az—=o Ay ax—s( Ax

Various symbols are in constant use for this limit:

WA o b e AY &
ds T dp =Y =S =Dy = m L AN

Examine Fig. 70 very carefully. Note that, geonle‘gw:ca’l’k}ﬁ's
Ay g
ax " o
and the r-axis,. As Ax>0,Q > P along the cukse and hence
the sccant P@ approaches the tangent, the $oint of tangency
being P. Therefore we have the importan® result that the
derfvative of a function represents the,'ttﬁgonometric tangent
of the angle between the geometric tangent to the curve and the
x-axis, That is O '

Y

tan «, where « is the angle made by the secant\line PR

jf = tan# = slope of tjlg'iéhgellt line PT.
Or again we could interpret e deri vative in the following way.
As x changes by an am@mt Ax, y changes by an amount Ay.
Ay . 280 .
Hence =" {5 the avérgoe mount by which y changes,
o &rage a YV ¥ ¥ changes

Ay a\*émée rate of change in 4 per unit
Ar MN'hange in x, in intorval Ag,
From thf{s“ié}ollows that
Oy _ lim 2 ._ instantaneous ratc of change in y
“\.?{1 dr  azspAx por unit change in x, at point .
’"\;T he principal steps in the differentiation process — the so-
\falled A-process of differentiation — are:
{1}  Consider ¥y = fix).
{(2) Give increments to
xand 3 and write 3 + Ay o= fly — Ax).
{3)  Subtract (1) from {2 Ay = flx 5+ Ax) ~ flx).
(4) Divide by ax S _ JO 4 Ax) — flx)
Ax Ax



§11] BEFINITIOMN OF DERIVATIVE H

D _ i 3‘_3’ — lim L& A% — F(x)
2% az—=pAX sz Arx

(5) Take nit

Note thar since Ay ->0, as Ax -+ 0, lim ay is of the form 0,
Ar—=0 AL O
The difficulties of A-process differentiation oceur in steps (not
ndicated) between (2) and (3) since it is essential that {5} be in,
e : . . AN
a form which actually vields somcething, not just g, when lingi{s
a— . . . Ay '.’
are takci. These intermediate steps usually involve algebraic
and trigonometric operations which do transform (4) into.d form
ameriable to fimits.  Many of these special devices ateesplained
in the nexi chapter where certain rules of diffckentiation are
3

X

developed by the fundamental A-pProcess, N
Several things showld be pointed oul at this time.
Ist. The increment Ax can be posi{ige or negative and
lim %-- must be independent of the waghin which Ax approaches
dr—a A2 N/
Zero,
Znd. A given function fix) @il have a derivative when and
only when the operations in\8teps (1) 1o (3) can be carried
through. That is to say AN . )
3rd. 4 necessary and'sutficient condition for differentiability

%

ol ¢

is that (a} lim %) e,xfsé This i3 more stringent than the corre-

Al — i1
sponding necesdary and sufficient condition for continuity,
HJ)}im f{x #8%) = J (x), since conecivably (b} might hald and

Gl
vet (a) fafl/ This is the case: not all continuous functions
have devivalives.

4I3"For the most part the material in this outline deals
Om;""":\vith functions that are conlinuous and diﬁcrcntiable
‘eXcept perhaps for functions that have isolated points of dis-
ontinuity), : . ’

Sth.  "The student should he wary of functions that hehave in
an unorthodex fashion; functions that jump about a lot and
whose actions are quite disconnected, functions that have an
infinite number of kinks and quirks may be, like people with
Similar symptoms, pathological.



CHAPTER IV

RULES OF DIFFERENTIATION

12, Derivation of Rules of Differentiation, To establis’h\Q\
rules by which functions can he differentiated at sight, {t*;.;:
defining A-process is employved. This process, as it is pplied
again and again in the following cascs, should he t@g}m‘ ahiy
mastered and the results should be memorized. ’l:hgd”;ffereﬂ—
tiation is with respect 10 ¥ unless otherwise notedx'\ &

)

'\("\
L \\ -
L @
¥+ Y =¢ \ W
~
3 Ay =0 :3\\\}
Ay Do
4 ay AT
Ax ‘s:‘:;“
dy S A
- df‘??slzl—»ui_\x =0
s AN
The derivative of a conslant is zero.
(\)
Ii. L
1. z"f\ y = %
LV + Ay =1 +ay
AN Ay = {x + Ax) — x = Ay
O 4 Ay _y
QY o
.*?‘:‘ 5. ay _ lim 2% _

4% arlaohxy

AN
No/

&he derivative of the independent variahle with respect 1o

tself is unity; or g -1

1.
L ¥ = ax
2 ¥+ Ay = alx + ay)
3 i\y*m"l‘adx—a:cza_ka

32



§17] DERIVATION OF RULES 33
p Ay
fa8 — =
i, A = ¢
5 D _ g A
v dx ‘_aj«lgio,lx =e
v
1 ¥ =X
2o Ay = v Ane QO
= 5" 4 el Ay + ?’(ﬂ_zr—i x"‘“_“.x 4+ /_\x“‘ .\
{oee Binomial Theorem, Chap. 1, §2, (31 ) {\\
. . 1 L min — 1 ! ." »
S Oy = nuxrtAxr 4+ ﬁz--r—) A TAxT 4 ,xﬂq’ \
) AN 1) e — 13y ., 7 &
4, _‘_)C = pytTl = 27 Tt Ay + \T\‘L\‘n}
5. & cHm 22 nxnL O
4 arwg A €

Ever though this rule has been Gé\\galbped by the binomial
theorem for a positive whole number#, the result itself holds
for any wha 1"~3c,wez constant value.»f‘ n as can be shown by other

methods,

The student ~h0uh;1xdpp1y the rule for any #.
V. Letzand v be {unctfan ol x and consider
T K
1. 3= q AN
¢ '\ /
Zor + Ay \ Au 4+ + Ay
3 Ay EAn + Ar
4 .J:m) An ﬁ,r
' ,:\{:&tr Ay T A¥
YWY : 3 dr
{\&“, dy lim &Y {’Au n éf”} _ ila’ t
1\ dx‘ Ar—=nAX g»qpa Ar o Axy dx

N\
Th@f]\,i ivative of a ( finite) sum is the sum of the derivatives.

g

1.

Moo=

20y + Ay = (f + duio 4 Ap) = w -4 + udv 4 0 Au + Au Ay

&~

AY = 2 Av + v Au + Au Ay
by A0 A Auds
Ar THAr TUa Ty
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Since Lhis rule involves the derivatives of # and ¢ separatelv,
it cannot be applied in the event # and/or » does not have =
derivative,

VIL
-
1 ¥y = "
9 Ay = ¥t AU o O\
2oy ay = N
3. Ay BEAW_u_vhw—uls )
: v+ar v w(e + A 0O
A Ar A\ *
4 Ay__ﬂ,_\r MAJC ,x'{\'.\ ‘
: Ax (e + An) AN
i Ay 0 2 _\;;’\E\V}
o ey =N ay = dx
> dx A 0
VI Since O
1 08y _ 1 \\\5‘\}
" Ax \@'
N A
therefore ;{:«‘x g
2 0 _ L
~\ dx  dx
'S) 2
IX. Suppose A\ g\}T‘u) where # = g{x). Now
@7 Lo
A Ax  Au Ax
Therel (\”\mkmg limits, we bave the very important relation
.\\ 9 dy _dv A
\‘* T dr du dzx

"’{ Using rule IX, we effect the differentiation of parametric
quations.  [For if

Lox =5,y =gt

4 nd Y can be determined and

h
then - and g
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XL

rules IV and IN, we get the derivative of {he sath
3 tunciion of x.

1. 3=yt
v 'EZ—U = ﬂ—ld_u
2. i n ix
XII. )
: » = log, u '&\\
Zoy + Ay = log, (w -+ Awd ,\i:\
3. Ay = log, (u + Aw) — log, i == log, (&—;Au < {»}
i S ¥
= los (L +57) Ik
\ e
PR § ) Lo (1.8 \;j%
- An T Am log. (.1 T % u loga (-1 ;&\%
0 \"
. . ; 1 - ¢, . .
Now ibe Iim (1 4 B = ¢ = 2.718 ,‘}‘{T‘he equality sign
E—wD
with a doi cver it, =, stands for “13 @roxlmatcly egual 10.”
See Chaps. 71, & 1) Hence \‘:«’
- S
5. L1 g, {1 —1—‘3“):"‘
du Has—o
= —fogc,aﬁ\
t e t\J
dy 1 \ e
a. —= = Alogd, ¢ —
dx Niéw» dx

If base o lma\lthmo are used, log. ¢ = 1, and this reduces to

7 d';}_:; _1ldu
R\ {\&:r u dx
N
°§L~ one reason {or base e {“natural’) logarithms — their
“‘;‘;Elmbhﬂe\ the differentiation of the logarithmic function.
N the [uture where no base is mentioned, base ¢ will always be
undersioocl,

X111,
1. Y o= g
2. logy =uloga
Tdv _ au
3. ;a = k)gﬂdx,
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by diilerentiating both sides of 2.

4P .. ntng g B
4. i log a It

1f a = ¢, we have, as a very important special case,

)

5 _df?_‘“ = eu@
o dx dx
XIV. KON
1. pIECI T ) i“}\ )
2. logy =rlogun \.
g ldv _ ldu dr A 7
3. var - U udn b log 2 o (”::\{.
dy = ppl du + w lop u d—b\\
dx dx e\

It is worth noting that the two pa ‘Qé‘f £t}lis; formula are the
cxpregsions for the derivative of 4, I;‘{b%ll’ig thought of as a con-
stant, and for the derivative of ud % being thought of as a
constant respectively.  (See XI»}&BH XIIT above.)

s”,‘

X\.T. \".“'
, A
1. ¥ =sin qu
2y 4 Ay = s 1&%4— Auy = sin 4 cos Ax + cos u sin Au
£ Ay =D¢inw (os Aw — 1) -+ cos 2 &in Ay
AYN fcos Aw — 14 sin An
4. NG sin o [T 2 ) e, SILAU
’\i{ié}\d 5 it ( KW I COs i y
. NEGs Ay — - SIN 4 : i
Now *L&En}c—“ w — 1 0, and lim 30 4% _ 1, provided radian
e S Ay Au—s Al
megsdie s used,  (See Chap. II, §10.) Hence
rN\"®
Qi 5 L os
\/o O di CO3
T
f. 2 cosu (—‘?f
dx i

This is one reason why radian measure is used: it simplifies
the differentiation of the trigonometric functions. Where trig-
onomerric {unctions are involved, radian measure will be used
unless otherwise noted.
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37

XVi. To differentiate cosine we note that

. . !
L. 9 =cosu =sin {; - ?,#)

]

Hence, by XV,

o Oy i d jw
2. a;::p03| .—--{——% A——COS(—_M

')

. du
= -— 8w -
ax

XVl
1. »=tfanu L Smu
08
dy  cos’u —1—31112
2 = - = sect
due Ccost secta,
dy du
3. B e
& = S _ ‘,2/\\/
XVIIT O
Loy =cotu=- ---l‘ §
tapge
s“
Differentiating (his as a c'uou«ebt we get
s‘X
a _ 0 — B’ —— cuct
© du A{\,dl‘l u
3. %\wa c8ct i f;j
XIX. O
&
£ L vy =secu =
o \u Cos
.\i/
\&/ o 9’2 04 sin u
R " du cost i
3@ = &ecu fan u

frits
secxtanu-—
dx

LN
H L
3
B3
1

1
1. y=cscu ="
BI 2%
o, & _ _cosu
Codu sind ¢
=—cscucotu
9 dy _ du

e —cbcucotua
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XXI.

1. 3 =cntu
2. u=siny
3. j—: = oS V
Now cos y will be positive if y is a first or fourth quadrantal
angle and will be negative if the terminal side of the angle pios

in the second or third quadrant. Ilence N s
A N/
d}" 1 ]. "’:3. '
- S, e S . ARG
4 dit  cosy T W _gp K \:\\
LV
e 4y 1 i AS
R AT »
dx T 1 _Tpdx \\\
6 @ _ 1 du D" .

oo _ "—1 =
I A et b \&S‘m u 3

The notation Sin—! # is used taiglﬁfcate the principal values
of sin—'u; those authors who use'arc sin # as the notation for
the inverse sin # gencrally adept Arc sin # o indicate principal
values. N

XXII. \*}\

1. }S\§603—1 u
2,50 = cos »
PN
L - .
:;\“3. d}-‘
i"\.wo
A

\n’hggé\the minus sign is to be chosen if v is in the first or gecond
<gg}d‘ra{nt, and the positive sign chosen if ¥ is in the third or

f;

P sty

=FVY1 ~ 2

urth quadrant.,

4 & __F1

T odu 1

o dv =1 dy

o= = 2 B
dy T e dx

6 d}ll = —__:] dl{
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LIl
3 = tan—!
2., w=tany
3. du =gecty =1 4 u?
dy
oo 1
Cdu 14wt \i\
5 & _ 1 du <y
Ty Tl 4wt dx g>\ <
XX1v. o
&
Y=ot lu NN
2. u=coty \ Y
. d A
i . 2oy — i
3. v cse? y = . C\—i— )
PR RS B
tfa i1 —L 1{‘ ’s‘“
R ‘éu
dx ,1\ S dx
K\
XXV : \ ))
-y
2. u=ssdd
.\;\}
3 ‘x\g&m} tan y = + yvaR — 1
NS

Here the plus sign is to be used if the angle

y is in the first or

third quadrant, and the minus sign used if the angle is in the

second oy fourth quadrant.

dv _ T _du o < Sectiu<—
B R T < Becly =

T
0 <8ectu =

T

s
2!
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RULES OF DIFFERENTIATION [Ch. Y

tions;

XXVL

1. y=cs¢clu

Wb

i =

csc

—cseyeoly =T uvu?

T1

vyl — 1
-1 @

uvur — 14dx

‘ut —1

Here the minus sign holds when v is in the first or &zfd guad-
rant and the plus stgn when v is in the second or f(n\rth quadrant.

dy _

T d

9

w1 dut
u v‘n— g —1dx

X \
—r = sy = iJ,Z; 0=Cectuy 5,

)

vol 2

¢*¢

. . AN
This completes the list of the fundafenial clementary func-

their derivatives should bemlemorized. The rules and

the results will be needed for fuLtE,er work in differentiation.

—

,nx

13. Tabular Form of Ru}es*of Bifferentiation. Wc summa-

rize the rules of differenta\’mon in the [ollowing condensed table
of derivatives.

Z )
»

&\\‘
THENFUNCTEN THE DERIVATIVE
\& y
1. :'\:}»o;: xm __J{ = flxtT1
& dx
O dy _du  d
e ay _ ou | av
“i\ ) T dx  dx + dx
"\\5‘” : dy dr du
'3, = -7 = N _’.. —_—
W ¥ A i it ge yd_ﬂf
du_ dy
4. y =2 dy __dv _dx
14 dx 32
3 dy  dy du
. r= ), = af- . — el
¥ =50 w = alx) dx  du dx
'
6. ¥ o=un z)é = qnL %
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Tor FUNCTION Tiiz DERIVATIVE

7 v = log u f dy _ ldu
- ¥ = 2l

| # dx
3 o dy dy
&, ¥ o= g Lo plng e ™
dx £ idx
iy di
9 p o g = = g —
dx dx X
O
dy due dv &\
1 g A T o
JEIE T s T log u ;iﬁb}\
1. 3 = g i dy _ oS I du "‘:’3’
' ’ i di dx ’x:\
L W
dy d&{(’"
12. ¢ = Co3 - — it
3 [NeER i 311 M@V}
; it
13, 3o fan y : A4 = SCG:’;:{;}{_‘"
di \\,‘i\ dx
i ¢ di
14. Yy o= et g F.J_~\_\ acz g B
ST & T
&N S
- ' X 2b< d-l(
B v o=snc WO e spe g tan g —
] 200 1 “} N\ S04 dx
)
N | dy el
16, ! o= RO L A = =—cscucotu—
/ e } 1{\ dx dx

7. ¥ — Bin7! z!\\ o dy .1 o

dr V1 — dx

B -m @ ol
x:\;w‘ 1 —rdx
1a. \‘1\/: Tan~*u S p— — du
&N\ dy 14 utdx
20,‘?5‘\ 3 = Coty : d;v - _‘i@
»\:3 v dr 1+ wdx
\%- ¥ = Seci g—_]" . 1 _ﬁ
N dx v — 1d%
' dy —1 du
Z | y-cw v

— |
14, Implicit Differentiation. Where y Is given explicitly as a

function of & there is no difficulty in obtaining d—i since if
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y = f(x), ? = {'(x). But in the event ¥ is given implicitiy a8
X

a function of x, L.e., F(x, 3 = Q, then, instead of first tryiag to
solve for ¥, it is generdlly preferable to differentiate immediately
as the equation stands and then later to solve for % {in terms

of x and ). Such diflerentiation is termed implicit differem.i\\
ation. N

‘ _ o A\,
Iustration 1. Given 2 +— x%? — 8 - 7 = 0, find j} \,
x “ 0"
Solution. Differentiating implicitly, we get "\\'“‘
dy dy ‘:\
5zt 4 Zr‘lo“’ — Gy =
v ¥ {\;
Solving this for @ yives the answer o\
Q:x PL £
dy 5t 2 g
dx Gyt —3 %&\'

\
Tlustration 2. Given y = g - r:111 ;x, ﬁﬁd v,

Solution, Traplicit diff ertmtmm vrclds

Y —j‘{f + xy'e™ | €08 x.

Henee yk\ €7 T CO3 X,
¢ TN 1 = ey

N\
15. Derlvatwesmf Higher Order. Since the derivative %—-

~

of a functioh “y s itself a function, ils derivative can be fornd
in turn. {g’%. write

A\ dx \dx
ON”
v

\szhis is calied the second derivative of the original function.

N\ e
.‘\ - ! ¥ =2 —( =y = f¥ = 2
) e =Y =1 = Doy,

Similarly the third derivative is indicated by 37" = jy ; and
%

the ## derivative by yi = g—y .
x.‘.‘-

Mustration.
P =75 — siz 2 o,
YV =Tz 4+ O’ — 20,
P=dxt e 12 4%" L 4sin 2.
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EXERCISES
Fymoomion DERIVATIVE
1 y=7+% 530 4+5: Do
G5
2 y=6x--dg ¥y =6
; V5 1 1
8. y=vist o~ et D, =3 S JE N SRR §
¥ =5 v == v
4, s=4/B7.0 B F?S._Lg._z
R ¢ dt g4 ¢\
. o
b ;r-:'-!-.l_'——-..l_ ‘if_—.l_—g zi“’
B R el g g ¢ ‘.;
B = {4s — D2 =7 féizr )(22)-;—4(4« \
T = (o)1) 3 = (L) (L) (= S
122 Q@ 0 — (14221
8 y=4r-1 J,r_(x*"x)atwf{ei'c—l)(Zx—Sx‘)
v oy \"}?xz — )
8. ¥ = (5 3 yf_g(S—&p (— 6x)
0. y=1(1 - %x)az—2) ¥ = (1 B06 x(xt - 2§ — 2037 — 2)3

i1, o= Q=

12, y == ~logsinz

By ton st (T gl

W oy=3css2x O\
)

AN/
16, 3 = tan—t ?_*',x o\;.,}

18 5= 21Xeds 32 — log
A
¢ \,£§ — ‘,—z

Q/ e %'*fl — % 3 dsintx
19. p =1 ‘.r.'l: E)
'C)f:,ftf:m(l -{—2

20, J’—nlogx“a

¥o=g ?@*1‘ log 2
’\;.r_ 22—11 Cos ¥
"{ sin %

f e pgec2 L B gect [T — T _
y~xoec-2+2sec(3 x)tzm(g 4:)

: — 8
V1— 4y

2
I

-2
1

_ .
@ + z*
!-'?,Jr”=?

’ ?,yJP=?

A
I

1

=hyl=?
Y= ya



CHAPTER V
APPLICATIONS OF DIFFERENTIATION

o &\
18. Slopes. As we have already seen in Chap. IIT, * 1\\
¥ o= ‘%’ =i = tan ¢ = slope of the tangent to the, Q\lrvﬂ
dx
¥ = fix). This we define to be the slepe of the CuY'i\f}si;Sﬂlf.

A2 _
Ilustration 1. Fiad the slope ol the curve y = 4 4% —~ 3 ,qcxﬁfl at the polnt

for which = = — 1. \{”}
Solution. yo=12x -3 \}
§
" 1 &,
¥ ”\\
Iustration 2. Find (e poinlis) at which™by tangent to the carve x2 +
3% = 1 makes 67 with the r-axis. %
2N
Solution. 2rx LG =0 g‘::x"
y’ ‘_Q::& = = — J'_
ooy VIV — a2

. . AN\ -
Setting this equal fo tan 6@ '3, we have

‘r\/
xéx

- =3V] — 3

o ’./ = 01— )
Q> % == 4, V10
O )
“ a3
O 30
]\ n proper paiting of sigas we lind the points to be

”\;“ VAT ) {4 s VED
Y ('.1'0 V10, — 507 and {— 10, ﬁ)

17. Tangents and Wormals. To find the cquation of the
tangent 1o a curve we use the poind- -slope form of the equation
of the straight line, namely
(1) ¥ = y=mi — ), Equation of Tangent,

44
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where 1 = g 2valuated at the poing (%1, 7). Since a line per-

pendicular to this would have the slope — %, the equation of

23 Fom A o l & — x:), Eguation of Normal.

‘i (a} the ¢ uauon of the tangent and (b} the equation ~
v the curve 37 = Bx ~ 1 at the point (1, — 2). \\

Fhe equation of the tangent will be of the form 3 )
=3 evaluated at (1, —2). Now 2 BN =ﬁ:?}, ar

¥ o= Hence our equation becomes N
- $
o S Y
FA2 e =il — 1N
3O
\/
PAN
NS »
\J
o |
.- .. - LN
Lengiir of subiangent — ST, m’.;& l
H i i ~aT QY : )
Lengia of suhnormal = SN GO8 P S X
¥ T s v £ & j\[
Lengil of uf‘gw"f = PQ
Length of normal =\ iy Fia. 71

K\

Ifin the =g juatioghef the tdnggnt (1) we set y = O and solve
for x, we get 1.he~¢90rd1 tes of T, T{x =~ J 1 0); similarly for

Ne/

A With this information the lengths S7, etc.,

}

- determined. They are

~

. . I 14
th of sublangent = l;t1 - (.h — -JI—I | =

Length of subnormal = | (20 +mv) — 20| = | mn |

vl 4 e

Lengih of tangent o

Length of normal w L VT o |

Mustratior, 9, Find the lengths of the tangent and subnormal to the curve
Y=~ Oy 3at (1, 2.
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Solution. ¥ =0xt -2,
¥(1) = 3.
Hence VTS
Length of tangent = 2173_9 = $V10

Length of subnormal = 3.2 = 6.

18. Angle between Two Curves. The angle hetween t‘;@"i\
curves will be the angle between the tangents. This anglg: ES

best given by formula (3) (a), § 5, Chap. I: R
.
_ _?.P_E-g_ — Bh 'N}; 3.
tan O = 4 + ‘,\\ }

where #;; 15 the angle measured counterclockys 15(;\“70?% the tan-

gent 1o curve (1) to the tangent to curve (2)NN"
\/

i
Mustration L. Find the angle at which the Qﬁ“vea intersect in the {irst
quedrant, \/
4 2 QW
L N\
) }" ’*«’8’96

Solution. The point of 1'1te"sr,0tm-1 is gotten by solving the two equations
simuitanecusly.  This viclds™e 2 By = 8, 0r x =1, — 9, The peini
of intersection in the firz t\q\mdrant therefore, lnq COOI‘dlI‘ld.LCb (1, 2v% 2

For {1}, »" = — Ei {&’ JE), ¥ = 1 Hence at (1, 2V2), my = — 1v%
3"
and e, =v2. Tl tlore
\ ¥ = ‘\/—2 —]—_1-\/5_ _ :::\/«2-'

‘C\./ tan f

O 3
and ihqémgle of interszection is given by
w4 5
'\\ fhy = tan~?! _;\/E

.‘\
{riuétmtmn 2. Show that (1) » —xy+ 3 —3=0,and (2) x4y =0
"\ “ intersect at right angles.
Solution. The points of intersection are readily found to be (t, = I} and
(—1,1). For(l), sy = 21 Zi and at either point », = 1. For (2),

]

¥ =—lund sy -~ — L IIBIICL
tan g, = _1 ‘_‘_l = ”"_2
-1 0
Therefore the angle of intersection is 90° Or apain, since my = - 1

the lines are perpendicular. ity
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19. Meaxima and Minima. We first define a criticai point on
the curve ¥ = 7(x) to be a point where 3’ = 0, ie,, where the
tangent o the curve is horizontal. Or we say that 2 critical
value of x is & value such that f{x) = 0. All roots of f'ix) = O
are critical values of x. The corresponding values of y are
called the critical values of the function.

Next we say that the function has a maximum value y, at the
point x = i if fix) < y, for all values of x near x,. Similarlyss
for a mizimum ¥, at £ = xx we have f(x) > y. for all values(of’

AN

\J

i 7 T
#
Ny .

b\ 4,
x:\.s.:

'S FIe. 72

X near ng\\ in Fig. 72 4, B, C, D are critical points; 1, %o, 23,

28! a{@@fﬁtical values of x; 3’ is zero at each point 4, B, C, D;

dand C are maximum points, B 1s a minimum, D is neither

shheé for some values of x in the neighborhood of % f(x) < ¥s

and for others fix) > v..

Further we note that the slope y' is positive immediatel_y
before (1o the left of) a maximum point and negative immedi-
ately after (Lo the right of); that for a minimum, the slope ¥’
1S negative hefore and positive after. In special instances a
Maximum or a minimum may occur when y’ # 0, as at £ where
Y =0,
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The points D, F, &, H are called points of inflection which
are, by definition, points where the slope is a maximum or min-
imum. The values of x for points of inflection satisfy //{x) =
hut not all roots of thiz cquation lead to points of inflection,

And finally we point out that if 3" &= G at a critical point,
then ¥ i3 negative at a maximuorm pomt and 1s positive at

a
minimum. We summarize: \
Q*
To determine the relative extreme values of y = f(x). e
1. Selve f'{x) = 0 for the critical values of x. O
2. Apply first derivative test: £
0 bef >’
! ! > O before | . LK
fx Tavw
@) 1057 i < 0after j Mamn}tf@n,

[ < O before”

OIS atter | 4

.M{}'}ﬁ'mum.

If neither (a) nor (b) holds th({l\tﬁe point in question is
neither a maximum nor a mmmmm ‘but is a point of inflection
with a horizontal tangent. ipf;,tf,éd of using the first derivative
test we may use the v“

3. Second derivaiive tget

If (%4, <‘1°} then fix)) is a Maximum,
If)”rxN\\) 0, then f(x,) is a Minimum.

If fix) = £} H‘lL test fails and f{x) might or might not he
an extreme( \Iﬁ this case there are (urther iests available
involving @rivatives of higher order. The results are {hese:

3 3

4 De)  J(x) = ) = ) = e = flei(r) =

f[nlifk‘?& b 0
,“\:"‘fj”.hen,

) If fleix, 0, fix) is Taxi
N ) n, e\«w[ f < () 1 a Maximum,

CIf fx) > 0, fx) 18 a Mindmum;

by, odd Fix) will he neither a maximum nor a minimum.
IMustration 1. Examine v = 225 4+ 32 — 121 — 15, for extreme wvalucs.

(¥ig. 73.)
Solution. Gaxt by —12
6('c -2~ =0
— 2, 1, critical values

T
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MAXIMA AMD MINIMA

49

First dariv:

¥ » Ubelore
v < Dafter |

For the soing x

T (O befo
¥ e dalir

for extrame

Solutica.

Using the tes
{ind

FO) = vy - 0, sirfedy™

¥ = TR

Sinee the firat

porit s .-

ezt [or £ = — 2 wields v
=2 = 5 = Maxiiman

= 1 we get

Ll = — 22 = Mivimam,

Txanine o= 3xt —xi 42
v liges, (Fig. }

i critical values

x = 0 yields

P r 2 $7
L = neither Maxlx&fm nor. hiininun
"N\
O
t N W v
o\ ¢
) "x"
=) Ilfa oL, \
«:’
A g

s

315 Inviolving high 1s\cerw'1t1ve, we

Q)
)

7

i = 6RO =6,

.m

mf‘\};{ml“n e derivative at the

Daagr odd order (= 3), ¥(0) is

147 B! & .. i 3
nettier .\-1a§;{:-,1=_m:- aor Mlindimum,
y 7 . It 1. I
¢ JQ wow(il = = Miniroum. Fia. 74

N

RN

mEiS\t‘ra.tion 3.

\>‘UJI (Sl

Solution, W

Therefore

SICH

e

Tisumine v = ge™2= for
salties,
el — 2 x) =
= %, critical value
=de={x — 1)
wem 2t 2 0

= Mdaximum, Fia. 75
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oy . . . : . i
Tustration 4. Find the relative dimensions of a tin can, to bemade froma

given amount of metal, that will have maximum volume,

Solution. The * given amount of metal” means that the tetal surface area
is specified; callit Sandlet r = radius and j = height
of the can.  Then '

(1 S = 2ark 4 25t
Now the quantity to be mazimized is the volume
2 V = mik ;
= 5; — mr? because of (1) \ﬂ
\ -
dV _ § : O Mg, T8
3 — = Bt e st
®) ar g0 =0 o)
P 'E critical valucs; bt no meaning, here,
T Y6x  tothe minxu\\;irgn.
) -l §ap, Which 's»i&éﬁtive for ali {positive)
drt T valueguly/
= O
ST = \.‘6—; corgesponds to a Maximum,
* 'Q‘.“
h__S‘—_%_V?T?;__S £ _
Zap® 5 415
A "Nox
%, III-§-
Y ; \I ET;' = 2 T

Hence the relative Himensiong are i = 2 1.
e N

Mustration 5. AT corridors, each of width

@, meet ahright angles.  Find the length

of the domgest pipe that can be passed

hori;f\ tally around the corner,
S?}}ig%u._ Referring tg Fig. 77 we see that

) \,hm\» lmles {pipes) can b drawn comnecting
\‘> TsUCR points ws 4 upd p and touchiné
cormer €, The length of the longest pige

that #ill gu around the corner i ihe length

of the shoriest fise ABC. Call the length
Fand write 7 = h+

&,
(1) = aescs - gsocg _ Fiq. 77
2 o dl
@ _a_g‘a(“CSCQCOtU+Secﬁtanﬁ)=G

Wn?e =1, ¢ = 457, 225°,  critical values; the one of

interest is 9 = 45°
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Testing at. 22y, 30° (before) and £0° {alter), we get
FIE0Y = a{—2vE 4+ §) <0,
PG = a(2vE — 2) = 0.
Hence
HAB®Y = 2av'2,  Minimion length of line and a Mavi-
muom lengih of pips that will go

around the corner. , I\
Tustrasien 8. Find the point \'.11ere the &.lope of the curve whose parametrig, \
equutions are x = 288 — 1, v = 34 - £ 15 a minimum. \'.:x
Salutiesr.  The slope m will be given by ;—J’ = 3" W
x AN
(1} d’L = 4y 'x:\\\ ’
ar -\
2 D_opiy N\
dt O
dy D>
3) m=% _dr 981 _9,, 4©
dv g 4r 4 {:(;;:
ol \ \’
It i3 the slope that fs to be minimized; mucfo"e we must ﬁnd “h =

A\ N
and set this coual to zero in order otm Sbtain the critical points fur f:lope

@ ¥ = dx‘ T [\é{j\ cf: \c(;i) dr

R ¢ 1 1=
:H\\s) 1 16:(‘” D=0

< Slope 1s Minimum.

+. Slope is Minimum.

Theref o;e 'theu are two points where the slope is & miniz=um; they are, for
& L (= — i), and. for ¢ (—- I, #). It showid be cmphasrzed

LT @, A
hat the test used, altnough gy olwng ¥, 18 the first devivalive test; for y”
IS ke firsi derivative of 3, the cuantity “hoce extrerme values are being

Iy eatlrrau,d
EXERCISES
L Given ¥y =zt 65— 2x 4+ & Find the coordinates of the point of
inflection anq the value of the slope there. Ans, (—2,28); m=— 14,

2. Find the angle of intersection of the two curves y = s and »* = 1.
Ans, ¢ = tan— §, at (1, 1}; ¢ = 907 at (0, 0).
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3. Find the equation of the tangent 7 to the curve p# - o a any point

P{xy, ) on the cwrve, ARS. v e -

Show that the line passing through P and the focus 7 and &
P paralie] to the r-axis make equal angles with the tange=nt 7

- Iine through

4. Find the length of the subnormal to y = e~ at the et of infiection.
Axs. 2et
§. Find the maximum value of ¥ = sin x = cos 5. Ans, V’{\\

6. An open cylindrical cup with a given volume is 1o be made out ghthe
least possible amount of tin,  Find the relative dincnsions. W

: Ans. Radius r_=\Leiht

7. A picture 8 high hangs on a wall with the bottory of t- .

the floor. How far back [rom the wall should a person stand§ :
[rom the floor so a3 to make the picture subtend the ia;‘ggst:\» ! angle?

N/ Ans. 2vo 1L

8. A messenger in a hoat directly off shore 1 milhaiches 1o reach a point

farther on down the shore in the least possible tighd/ On water he can trave:

30 mi. /hr. while on land he can travel 50 miyMe) Covsider tae snre straight

and find where be should land, {:f\

Ans. % of 2 mile on dewn the shore -tmi‘zgrcl hiz objecti

greater than £ of a mile dov,-'ri ‘the shore. I hig

mille or less down the shofehe shodd travel

<

miniraum time., A\

Hjective i8
ik 2ofa

7 water for

9. What is the volume o me\right cireutar cylinder of greatest volame that
can he inseribed in g rlght‘c;ir arcone of radins r and height &7 Aus. o =l
10. o strip mining®he cost incresges o
the value(o“f the product increnses as the square root of the depth and that ata
depth of 25 {eet shdvost of mining Is $1.25 /cu. unit and Lhe = 85,000
unet. At whapepth wilt the greatost orofit be made and what is Vhat profit?
K {\ Ans. Depth 100 ft.; profl 95.00/cu. uiit

irectly as the depll.  Suppose that

QQ%XE}aight'Line Motion. Various problems in kinematics
canp solved by the use of the derivative. 1If a particle moves
. :é}plig astraight line so that its distance s from some fixed point

Nis a function of time, then s — F(5), the velocity ¢ — 1;3 and the
acceleration ¢ = & _ @', ¢
dt  dr

mus“ﬁtﬁof’ L The height s fect after f seconds of a certain hedy thrown
vestically upward is given by s . g5, . 15 4 Find fa) the velocit
ad acceleration at any time 1 (b} the initial ve..locity;: () the maximut
height reached by the body; (d) the velocity at the end of 1 sec (¢) T
time when it returned to the ground and its velocity then.
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Solutioe. {8} Po= % - 3201 Ca
[ o

Bl AL =0, 8 = 95 L ‘sec,

]

s ; s
s attained when —d L=r =0
e

om0, = Fece,

6.3 —16.9 = 1441,
fd} = £ SEC, . \i
(e} S =0 =087 168410 {bady started up), A o
{ =& (hody returned 4o the ground).

#E) = — 95 ft. fsec.

7o

L 3

« N\
. . I . At ¢

2. Aparticle mavesin g straight line =0 that s = @é} et 4+ o).

¢ velocity at any time ¢ and show that the acceleritio

o s v

\

1s propor-

2= ff; = kA sin (k4 2) \N\VY
£ »
) a\)
d

@ =50 R2A cos (B 4 o) & L,
il a

o /. . .
Tz motion, with the acceleration propor@mf o displacemnoent, is termed
SEafile Barmonic moticn,  Tlhe amplitugdg of the motion is A; the period —

F R N
27 the phase cunstang is 7.
# LN
»

Al

Z1. Curvitinear Motiom™ When a particle moves along a
Curve, the expressions {m,\velocil.y aud acecleration are a little

& A

more complicated, *Q&t the equation of the curve be given in

Y P Y
A/

TN

A\ |

Fi1g, 78 Fig, 7

Darametric form y = § (0), ¥ = g(f) where the parameter { rep-
fesents time,  The velocity # is a vector quantity and has com-

Donents 4 ~ @ s
R R Rl
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The magnitude of o (speed) is

o] =VoF T,
The direction of # is given by

=l

tan g = g
The velocity vector is tangent to the carve of motion. O\
Similarly for the x- and y-components of acceleraiion o lave

.\i\

N/

g, = % _ &% 0 = B Ly
Tod o YT w T a )
The magnitude of ¢ is )

A\

| a[ =Vas - af

AN
The direction of 7 is given by &K &
NV
fan » = L. W

By
A
actor is not, in éeneral, tangent o the curve
0,’& v
Sometimes it is Impoeriant to resolve the acceleration vector
Lo components tangedt and normal respectively to the curve.

The tangential CO@ flent az, and the normal commponent ax
are given by

The acceleration v
of motion.

O
7" N/ — EZ 718 _|_ yav
P ar = T

".I

\s.t v | o |
%Elgm_\ler Important concept js that of angular velocity, When
| 3-paiticle moves along the circumference of a circle the cen-
\>§I“cﬂ angle 4, measured from some fixed direction, is a function

of 1'.jmc I Wedefine angular velocity  as the rate of change of
¢ with respect to lime ¢ and Write

{,\J:.:—d'_g

dt

Likewise angular acceleration 4 ig dencted hy

o=e_ 20
@ dn
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Or aguin we speak of the angular velocity and angular accelera-
tion of 8 vactor P drawn from the origin O to g point P as P
moves along a carve,

Hivstration 1. A particle moves alony the parabola ¥ = x*with a constant
sheed ol 10 7., Find z, when . is 2 it/sec. Also find the Corre-
spansaing point on the curve and the z- and J-components of acceicratiol\’\
e \

PR

B =+ AVE [t S, N
"4

Solution. {n

b
N 3

EeT. a . N o 4 . X ." .
Ulitereniiating the equation of the curve of mation with respestits time ¢
we g \\ ’
v L, dy . <!
o A g 2 p, = 2 o ‘
o AR 2) 2 = 2 aw, R “.§
s 4asE = NN
T AVE = X == 6

. iy _ \/ _
iting (13 and (2) with respect to ¢ we ;_-sr'; /e at two equations in

Pifer
the unknowns 4. ang .. namely A\ N
/ 4 l?
0=+ o, o -2 :%} +2nn
Solvirg 1hese simultaneously we got N
&N

dy = T —l',,\{\ ft,,_-’sec»f.’;::‘*a,_. = & M. isect
a3

Tinsiretion 2. A particle moves™® that its 1 and y-conrcinates are given
by x = acos2y y==5 sim‘{}} Find (a) its velocity and acceleration
#- and y-componentis, 'THQ" ) the magnitude and direction of the velocity
and acceleration ve ‘0\ ¥ Show (¢} that the path is an ellipse.  Find
() when g, is a ma[;%um. {(Let ¢ be boih time in seconds and radian
measure; x and pae to be measgred in feet.}

Solution. (5} NY Fr = — 2 8in 2 {1t fsec.

?§“' =2bcos 2t 1 faec.
‘\,‘ @ =—dacos 2L zec,
@y =— A hsin 2 ft, fsece,
) A\ o VR g = Ve 2 T e B
~O = Ve 3T 1 ezl

{c) 5=c0523, ¥ o sin2t
b &
Hence "‘j + :’_ = 1, the equalion of an efiinse,
23 [
@ %y~ 8heose—0, ;=T 9%
df i 4
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Lsing the second derivative test we have

a4y _ 15 h5in2
ar

Aty = E this i3 plus, therefore a, i= a Minimum;

Aty = 34’5, this is minus, therefore ¢, is 2 Maximum.

The particle iz moving eround the curve counterclockwise and has st
o . . - . N/ 3
mum g, at the lower end of the minor axis. Note that here . ~{& “

N/

B . L ¥ :
Nlustration 3. A parlicle P moves around the eireumiorence nFasi®cle with
constant angular velocity, Find s, ty, @, 2., @0, ax. 70 .\
&/

Solutien. Let the equation of the circle be given in pa\re’?; dric form
\ ¥

1 =rcosd, ¥ =7sing \,~
o 4
Then ¢, = — ruing d_a, vy = reuss @ & {>
at dt \&:\
=— twaing, = 74 COS # Q\'
vd
@ =~ T30, a4y =— ndsingl o
g = 0 S Ul . \\
] N
&
{— 7er 8 J . N
- (S B 160N 0) — (o 005 0)( 7 cos )
& ';“ Vit sing 8 4 2 oo
- 754{3 g
Th e -
] 1 1 3 . il . . — . -
u[h “zii{fth& {if:celerqtmn is directed toward the center. The nrojection
u P\Q}on a diameler cremutes simple harmonic motion since @, = — %6

th&t& the acceleration in the » direetion is proportinnal to the displace-
“‘.‘?ent in that direction,  (See Mustration 2, § 20.)

~Q -

\/) ustrgmn 4 () Find the angular velocity ard angular accelerztion of a
particle which moves zlong the cyrve ¥ = x%in such a way that & I8
vonstant end equat to 2 ft. fsec. _

() Tind « and o ut the poinlt (1, 1.

Solution. (a) MNow 0 =tan1¥ _ tap—t x_ﬁ

I
y
|
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J
w=@0_ = Gt gl gy
ftn x(1l 4 g} it
—— I+3x
(] + xR
(% @iy = Frad.fsec,
o . @ T 1 1‘.’.1('1,_;!5&132.

Y
43. Related Rates, Suppose that g relation exists betyfepn
1

twes variables # and » each of which depends upon time 7. Phen
<\

i e . . a ¢
g;-{-- and -2 rapresent respeclively the rates of chang@g‘fﬂ and »
i i 7

with ras

ect to time.  Since w and 7 are relatiil‘ 5} will i? and

dx . \ ]
i be related and these relations may be ugedMo solve a variety
i &/
of probierms O

TOOIEMIE, N\

Hlusivation 1. A hoat is being hauled fowdrd a nier which is 20 ft. above

thewater,  The rope is pulled in abﬁb&*rate of 61t /sec. How [ast is the

Loapproaching the base pf thé Dler when 25 . of ope remain to be

5} lad i N
L\
Soluticn, At any time ¢ w“e‘k}.’e Tier
\ z
A a . 20
\QQS”_? xs = g2
Henee f: ), % % =z d_j g
. e ON Fic. 80
When 2 » o= 135; therclnre
:"\{‘o
N 15% - o5~ g
N di
R\ dr
3 = = — 101t fsce.
O di !
o Nos

Nhie boat approaches base at 10 £t fsee.)

Mustration 2. A conical filter is 7 in racivs and 4 deep.  Liguid escapes
through the filter at the rate of 2 oc/sec,  How fast is the level of the
Hqudd flling when tae depth of the liquid is 3777

Solution, Lot 4 he the depth of the liguid at any time ¢ and let 7 be the
corresponding racins,  Then, at any lime 4,

-2 . _3
=3 Tyt
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Since we seek % it is best to express Vas a

[unction of #.

Thus
Vo= Larh = 47, pl
ﬂ! = g it an
d 16 dt

Using 1" = 2,54 cm., we get

2= 2o esp®t o o oo e,
16 df 714

The Hoquid level falls at the rate of .02 CImn, /3ec. A
o ?
Hlustration 8. A man 6 ft. tall walks at 4 mi. /hr, directlvlgvay from a light

that hangs 18 ft. above the ground. () How fakt)does tiadow

lengthen? (b)Y At what rate is the head of the shadd® moving awsy from

ke base af the light? Ve "
, ¢4

; Py _ ¥ "N\ o
Solution. (a) 18 5 g\ Y1z . “?M%
T s 2 ¥ ‘:' w4 r.}; M"ﬁ,ﬁ\

dr _ gdy BN 1dx Y e
di d’ TN Tar PG s

. N . &
This says that the shadow lengthens at a rate cqual to one-hail that of the
walker and is independerr's\o position. “Therefore, at any time

3_{\%5 mid. /hr.

(b) Now the headhof the shadow moves at a rate equal to the sum of the
rales of thengralker and of the lengthening of the shadow. Call L =

E
\“ dl _dx | dy
N @ " T
?J’.\ = & mi. /hr.

(Binis also is independent of position.
\/
Olustration 4. A dive bumber loses altitude at the rate of 400 mi./hr.

How fazt is the visible strface of the earth decreasing when the bomber
i3 one 1rile high? :

Solution.  Tirst call the radiys of the earth r and call the height of the

bornber *; let z be, as in Fig. 83, the distance from the center o the base
of the visible spherical can. We have

T _ 2 _:
T+ 7 ¥ece each equals cos e

P
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e
Z =
T x

rea of the spherical cap cut off by a plane
from the center is

A =2?r‘r(?‘ - 3)

=2t — -2-ﬁ
T4+ x
44 _ 2wt dx
(4 apd F16,.83

Puiting r = 4,000, x = 1, j?x = — 400, we can cvaluate "{Cﬁ@(a}.tly. How-

W
since r + x is approvimately equal to T, we c;m‘géb an approximation
Sy %1 with little work. )
a\/

A L, & o

=27 4% = 2 4008 — 400
a7 g T 2 rA = 400)

=32y 1033@ el hr,
L 32.2e T .
== = s([. mi. /sec.
7880 g0 S TL/SEC
=8 "800 sa, mi. fsec,

The visible area decreases ax\tﬁe rate of approximately 2,800 sg. mi. /sec.

\
OO EXERCISES

i, A body moves iﬁ\} straight line in such a way that s = 2 — 57 + 6.
(a} Where is the ]:30&;; atf = §? (by What is its velocity then? {c) When

wiil its velocity p@pasitive? dAms. @) s=—5 Wy =0; (&) ¢ > £
% A bod}w\hnires in a straight linc so that s = 3 — 32 — Q4 -+ 5. Find
when botlythevelocity and acceleration are positive. Auns. > 3.

3. Aattice moves around the cllipse x¥ + 2 = 1. Where will the two

orponenis of velocity be equal? — . -
R\ yhe D (YB_VE st f VB VG
Vo N Ans. v = w4, at [=7, — | and at - =
m~\J 3 6 36

\ / 4. A projeciile, when acted on only by the foree of gravity, has the following
Path: 5 = sl cos o, ¥ = s Sim e — i 265 where 2. = &y 05 @, #y = P sin e — gf,
and « fs the angle the direction of fire mukes with the horizontal, How far
will the projectile travel in a horfzontal direction? .

Ans. Horizontal range = %” Sin 2 e.

Show that this range is a maximum for @ = 45°.

5. If a particle moves aleng a curve with constant speed, show that the
tangential component of acceleration ap = (.

8. Show that for motion along the cycloidx = B —sint), ¥ = 1 — cos ),
the magnitude of the acceleration . @ | is constant,
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7. Gas is let into a balloon at the constant rate of 3 cu. 1. fses
is the surface area changing when the radiug is 10 in.? Ans.
8. An airplane, flying due north at an clevation of 1 mile and
of 300 mi./hr., passes dizectly over a ship traveling due west
How [ast are they separating 2 minutes later?

s X\
23. Polar Coordinates. Whereas in rectangular f:rzo::fdingte‘;#}
‘g represents the slope of the curve 3 = fixy, in p )

I . _ \
nates i does not represent the slope of the curve AL

merely represents the rate of change of the radiug%%!c ior p with
respect to the angle 8. In order to determhna ’s';lope in pelar
coordinates we make use of the relations jibthveen reciangular
coordinates (x, y) and polar coordinates @}ﬁ}. These arg.

\ o/
T=pc08f, y= So,}in g,

L 3
N

Hence
i d N
dv oS,
i ;\%‘?emﬁ +pcosd
:\\ w4

dp .
Slipe = & _ 0¥ Feeosd
%, dx dp :
O -dgcosa—pemﬁ

This red@g};, when numerator and denominator are both divided

by gge& 0, to
:"\.ﬂ“‘
\”(;j ™ tang 4 2
Slope = T2 where o' = 22
1 —tang. 2, &
o

Ay Hh. 'thsl formula_we can readily find the slope of a curve whose
equation is given in polar coordinates
An important angle is the angle, y, between the radius vector

avnd the tangent measyred tounterclockwise from the radius
vector to the tangent. (Fig. 84) Now



|

— tand tan y?

A

wring (1) and (2) we find

3] tany = 2.
&

ngle between th curves
woirld then be given by ({Fig. 85)
Bia == ¢y — ¥
ere d

WiACcte 5 15 the angle measured
couniercloclwize from curve 1 to
crve 2. Hence

3
i

tan by = tan iy — i)
I

@ _ tng — mny, A\

E i L

I+ tany, tar.-, Y
LN

Formida 3) is rufd to evaltiate

tan . and tan . ,\

&}
Higiration 1, T 111(6\ < glope of the curve o = 2 — cos 0, {a} at any point,
g =% ¢

N

3
> N4
»

o/

Fia. 85

tan s -+ 2

Seluiione () Slope = u

PRl he E) 2IOp I
/ I—tanpt
I

3 . tang £ <088

N _ 51t &
\'“’ - 2 — cosd
1 —~tanps~ L2585

\/ sin @

_ mnﬂtm@—r“ — Cosé
a(sin & — tan @)

A
e} Slope = =
.V'( __2
2 T,
=-—"__ ai# =
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Iustration 2. Find the angle of intersection of the curves {1} ¢ = sin o,
and (2) o =14 cosa.

Solution. For (1) we have tan ¢, = -‘-’; = Sné_ tan g
g cosd
For (2) we have tany, = £ = 1—+f3-0ﬂ
o — gin #

Curve {1} 8 a circle; curve {2) is a cardiold. They intersect i the tw \

; !
points tl, g) and (0, +}. For any commen point we have ., A\
Nt 3
tan dyp = dan iy ~ tﬂn& ~>\ ”
1+ tan ¢; tan ¢ N\ o
L ” }
L_C(]lg — tanf 2 & \
___ —sine . ‘.\{'
14+ (L‘-"ﬂ-‘?f tan o '\(w’
. -~ 5in g \\
~ L4 eosd 7 g
sin & N\
. v N 4 }
At the first point of Intersection this reduce&}
L\
14 cog N
tan fry = — Q0%
s
o
therefore SmQ—R
D
At the second point, \\
O 1+cose Q. - ;
yyNdEn f, = 2T - J 5
> < 12 — e an indeterminate form.
But Lh oy o T _
siri"r};c' el 5 and cot 5= Q0.
Henee A0 and the curves are tangent.
R\ '
RN
~O EXERCISES
= )| 9 v
\/i. Find the slope of the CUIVE 2 = @ sin 2 f at the point (a. E) (Fig. 63.)
. Ans, — 1L
2. Find the angls Between the radiys vector and the tangent to the curve
/= af at the poipt (47 =), ™
1@ point k 5 2) . Ans. tan™ 5

I

3. Find the angle of intersection of the curves p = g(l — zin 4, ¢
a(l 4 sin 6), at the point (g, 7). Ans

e



CHAPTER VI
THE  DIFFERENTIAL

24, Differentials. Up to this point we have \ctmcu,dere‘d\<2§
e

as a single symbol and not as a fraction. Bul it is clear, how
ever, that since g)- 1s the tangent of a certain anwl{ﬂ‘. Could be
represented as a fraction if we 80 desired, I“lﬁ;tiher we could

choose srhitr arily any value for the denonginiator, say, of this
fraction; then, of course, the numerator would be ﬁxed so that

the ruiie would be equal to g' « The S}ﬁgbol liself suggests that
x

we defing quantities 4y and dy and ir:hen take the ratio of these
for the derivative of ¥ ’

With rezpect to 4. Lot BN
us recall {hat XY
\ { A _]_ Y
qy . A . , Lo, g Ay
ol fim &Y =, N\ @
d«l’ Ax—pey) A ‘& )
Now X S
ll‘L! .oo:u/’
—- = {'_'"Jr_| - 4 s\./
ay R ¢

W 4

Ay and * oemg incre-
ments §fthe dependent
and., fnderondem varia-

b{u Fespectively, Hence Fic. 86
iy S theratio of two increments. But g = tan 4, in like manner
could be called a ratio. If we set Ax = dx and call this the

. . , d i
differential of {he mdependent variable x, then FriRAt)

Cdy = £(x) gy = Z’i’ dx. We define dy as the differential of
62
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the function. The differential af @ function, therefore, equals
the derwvative of the funciion mulliplied by the difieveniici of the
tndependent sariable,

EXERCISES
FuNcTIoN DirpERENTIAL

Ly=x347 dy = 3 32 dx s &\
2 4= 4 D e e g N\
2. ¥y =4gn3x dy = 12cos 3 x dx " N
3. ¥ o=t - lng dy = (2 rett }) g “‘:.";‘

Xy L)
4y = e ' dy = (1 + 1) dx \ ¢

~
N
Z ™}

3. y+loqu+tan2x =5 dy+Lay o 253'5.‘0223‘-%\h =0
¥ . N
25. Approximations by Means of Differdwhi¥ls. Since the
limit of —j%, as Ax -0, is equal to j_y’ then Tg\;tht very notion of
. > %

approximately (the equality sign with’a dot over 1, =, stands
for “approximately equal to”y o8¢
"

. . . a \
alimit it {ollows that for sufficiently sn\{aﬁ values of Ax we have,

cjyfﬁ;"a}'.
This enables us to use d

¢ iJ{Erentials as approximations to incre-
ments. Whereas i1

1Y be somewhat troublesome to compute
Fhe exact value of § B Increment Ay of a function for a given
1ncrement Ax of the independent variable, it may be a relatively
simple matter 0,Compute the differential dv, 2 urther, where
actual fueasurements are being used, 1t would usually he foolish
to computeldy “exactly” since the measurements themselves

are not*Qihg’ but approximations, If Ax is small enough the dif-
fercx;g?hbetween dy and Ay will be small.,

N »&E;-‘here €Irors of measurement are involved, it is customary to

Neill 3y the error in ¥, ‘i}i the relative er'ror, and 100 2¥ the per-
. r . j"
centage error, Approximations to these are

dy = the error in ¥
dy
7

d
100 _}y the bercentage error.

= the relative error,

It
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= —

Note that if log v is first computed then the relative error is
automats Va'h Lnbmduccd upen taking differentials since the

differeaiial of log v is l-aj-'.
W

o

tien L. A spherical ball bes ring when new measures 3.00 inches in
What is the approximate volume of metal lost after i Wearsa

= ?
tor =208 uthe:s | :‘\.\\
Soluiiza. Vo= iyt ¢\

dV = 4 nr dr o 7
= A r(3(02) = 724 A\
= 2,25 cu. in. ’\'\’\

figures 7 = 3.00” and v = 2.68" dl:e\emct then the

L‘l ’\\v'

AV = $al3 — (2089 /\
= (7152 {ijb r
= 2,26 cu. in. to two d‘A‘Q‘mﬁ places.

Ilipsiration 2. Find fa} the error, and*(b) the percentagc error made in
crputing the volume of a cube 11 »a‘l*,J errar is made in computing the
gl of an edge. RN

1z
Soluticn, IS I\
dV = 3t dy '\\

New wo yre overnt 100(‘@\ 1, ie dx £O1. Therclore we must modify

d 1 to read O x
Ve N
av &g dx by maltiplying and dividing by x.
:\“' X
) &%= 3 x000)
\\ = .03 x* which depends, necessarily, upon .
o XN @V _ 3
088 e
e T
a \Y
N/ - gdx
x
= .03

Hence a 35 ervor in the czleulation of the volume will be made ifa 15 error
is made in the rueasyrement of an edge,

Hlustration g, Kinetic cnergy is given by E = Laws, If K is known only
to within 2c; [or g given muss 2, find {a) f.hc, redative error and (b} the
Percentage crror made in estimating the velocity » from this equation.
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Solution. E=1lme
log B =log bm + 2logw
dE dr
6L o 8Y
E v
02 =29
v
dy p
2 _ o1 &\
{a) ; | Q
Frif] 5‘ \, *
0= =14, QD
(b) e} : “ O
O
EXERCISES A
1. Approximately what would be the areaof a circulay I;iu,-’;\éf radius 7 ax?d
width dr? \ x‘{né. Al o= ey dr,
2. Find, by using differentials, an approximate vallp for V309, (i7at:
Let y =¥ and find dy.} Ans, ’Zf}gt‘k vorrect. 1o 3 deelizals.

3. Approximately what is the aliowable p ‘s@ge error in the mearnre-
ment of the diameter of a sphere if the volume %) to be in error by mors than
3u? \ ¢ Ame, 1o
! ‘,\; . :
4. A painter, in making up his bid for i}éihting an observatery’s hemizpheri-
cal dome, estimates the radius of ﬂlg‘fd&ne to be 28" when it fs actoally 207,
1f the cost of patuting is 2¢/8q. ft. apdeoximately how much extra will iy cost
him to give the dome 2 conts? LN\ Adiso BT408.
5. The period ¢ (time, in conds, for one complete oscillation) of a pendu-

fum is ¢ = 25 l i= 3{3\ ft.jsect, I = length of the pendulum in fest.

fa) I{ a pendulum tgg%?e;gri sec. for a com
iwo sec, for “tockd’), find its length,  (b) If, because of extremer cold

weather, the D adilum of such a great-grandfather elock should shrink 1o
13", how ch@gp ¢ would it gain or Jpse ina day?

% Ans. (2) 13.05 t.; (b) Gain about 2.7 min, /day.

plete oscillation (two sce. for *tick,”




CHAPTER Vi
CURVATURE
.'\

s . . . "\

26, Differentiation of Arc Length., We seek the Instant, é

ous rate of change of arc len gth per unit change in x. Th\{{awnl
evidenily be given by O

ds . As N

2 lim &8

dx e Ay =:\\ ’

v

where s ropresents the length of arc measure {fom some fixed
point F on the curve, Sce Fig. 87.) 1In rer to determine

ds we note that
dx

. FERYEaN
= a0y N Hie, 87
V1l + fk,ﬁxl

\> . o . AS
Althongh Wg;fﬁﬂl 1ot prove it herc it is true that lim 2° =

N\ ar—0 Z
m -V 1 Henee
lim ~ MM 1 Hene

wo 0 ClGr

Q\ coAs T A

' o= lim 1 (22

'“\{3 AE-I—IBD Ax .a%}l—IEDN l'\ﬁxJ
1 PN
4 dx NI+ (dx)
This could he written, in terms of differentials,
(2) ds =1 4 y2dx
Or again
3) dst = dx® + dyn

67
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Thesc are important forms and the student should realize that
essentially they say that ds, dx, and ¢ y play the role of the sides
ot a right iriangle. Intuitively {his seems very roasonable
since arc approaches chord as arc tends to zero, A lits] reflec-
tion will make it clear why the situation is quite citferent in
polar coordinates where the expression corresponding o (3) is

"

@) dst = dp + p do, O

This follows from (3) immediately upon transforming ,fi‘On}
reclangular to polar coordinates by means of the Ii;;éﬁi{.i(gﬂis
*=pCos 8 y=psin g The student should becorne thor-
oughly familiar with {hese formulae since considergi@é Hae will
be made of them later, ¢

s ¢ Y

27. Curvature. In the preceding article s ’czlevelopcd the
formula for g;, the rate of change of arc léi)};i}l with respect to

. ; A0 o
unit change in x. A more usefyl nm'.lg?n,‘however, 1 thal of the
rate of change of are length per init change in inchinstion.
(Inclination = 4, where slope = fun's; see Fig. 88.)  Weshould
really prefer to consider the regiprocal of this, namely, the rate
of change of inclination DEr tnit change in arc lengih. This
would be in symbol N\
L . Af
KNG a9
‘& ds a}{-r-}}o As
and is defined asutvalure (at a point P),
We. shall nowSderive a formula for K in terms of the more
familiar quamiities v and 3. To do this we write
Gi\fm"-l 3 Y
and‘jdh‘fercntiate this with
Xespect to v getting

\/3 a1

Ea
Then
49 _ o dx
ds  dy g5 X

=2 (L)}
RS Fic. 88
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Foally curvature

1ign of K is chosen as that of 3 although many
at A as always elng positive, o &\
measures the rate at which the tangent line tll;{{s\\
e moved along the cuyrve, Or, simply, it m\.ga@-

fte of change of direction of the curve. O

%
X ¢

authos

per unit ¢
ures the

Hlustration 2. Find the curvature of a circle of radiys 1, .\\ 3

First Bolulion, Tet the equation of the circle he ".&"
* K 3
e N\
Then 2x+ 2y = AN
AD
, T &
y=nt K3
¥ NS
,  @5H{-2)
o ¥ XY A\ Y ¥
A . T
7 N ¥
—_r &Y
N\
F2s

E &S5

U 2
S

..ft.} S where 37 < 0, ie. for y > Q,
P, 7

P \\d
2\
Y{\Owever, curva-
ture &f 8\dircle is considered
POSUIR® everywhere since this
18Ghe regyt

~% |

where 3 > Q, Le. for ¥ <0l

It we should obtain
i we were tn cornpute curva-
lure directly from the funda-
ental defivition.  We do
this in the

Secong Eolution.

K= lim &
Ar—e 0 AS

Fia. 89
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Recalling that s = % {or 4 circle we have
As

K= lim L
Ae—aD AS

N Ll

Thus curvature is a constant for a circle and is equal o the ree iprocest of th.
radius. .

s 0 Y
By making use of | 4 § 26 we arrive at the [ollowi lng‘ fb mula
for curvature in polar coordinates

£ ™R
3

tr

2 K =82 7120% = 0p" \{'

P+ p%) \\w
Mustration 2. Find the curvature of the spiral, ,_-Qwaa’

Solution, p = af ”i\{"
pl=a 3\\\"
o’ =0 \‘,
K - @ +‘i »
({22192‘:{ @)
_ }Hm 432
Q¥ @+ F
O

Illustratlon 3. Find K{o curvature of the cardiold 5 = g(1 — cos ) at the
t \
poin ( 2) ;’ )

N/

Solution, p r\a{] — cos 6)

’K"f a Sll] [
\.w’ =acosd
\% K = ®0 —cosop +2atsinig — - a(l — cos 8} (a cos )
:; [@*(1 — cos 8)t 4 g2 ginz i
M\(} = S-deosp 3
\/3 2V2al — st 2vZap
K= 34?2- at the point ( 2)‘

28. Circle of Curvature. In Tustration 1 we found that .
curvature of a circle is the reciprocal of the radius of the circle.
Similarly, for any curve, we define the radius of cureature as the

absolule value of the rectprocal of curvature. That is, for any
point on the curve,
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; 1
s o=t
{1 e , 7 I
(2) R = 3—“—;”—?-}—2, rectangular coordinates,
(3} R=_ oot bolar coordinates
PP+ 2o g '

The student sheuld memorize the definition (1) but shoulcl,n(}}
try te remember (2) and (3); if the formulae for curvatute-are

L. . 1] F 4 N\
knowe, 1t s g simple matier to comptite the radius of curvature
1 A
from & = . .. A

| K| O

A circle drawn with this radius R and withx;eni’e} on the nor-
mal 10 the curve on the concave side will hayeMhe same curva-
ture as the curve itself.  This circle is caligd\fzhe circle of curva-
ture; it i an aid to the understandin%.(i{ the geometric signifi-
cance of curvature, Q\\’

29. Zenter of Curvature. Ip;&ﬂér to find the coordinates
of the center of the circle of eurvature, referred to briefly as
eenter of curvature, we procecd as follows, Let the equation
of the circie be A

0 @GP - 0 -2 = B
where %2 = -%-gi..:iﬁpon differentiating (1) two times we get
Y

upon siraplifpfad :
o o* =175

) AN Y y=8

O K

{3}§~<:5~ jr"f = (y—__;éj_s.
N W

SQK’ing {2} and (3) simultaneously for « and g, making use of
the value of R, we get

(4) o - 2%;._),
) PRI e
=5+ I

Thus the coordinates of the circle of curvature are given in terms
ofx, 3, 4, and .
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Dlustration. Find the coordinates of the center of curvature of £he cublcal
parabola y = x at the point {1, 1).

Solufion. y — x? Y

=32
¥ =6x

o=y 3%+ 5%

6 x
s=y+1 2 C-4.%
3149 \
=l T8y
“ G
G=T14 10 =5

30. The Evolute, Asa point
£ moves along a given carve
the center of curvature ¢ CorTe-
sponding to I” traces out a curve
called the evolute.  The eoofute )
is therefore the locus of cenfers N
of cureature and we might conay Fra. 90
sider equations (4) and (3) 20"
as the parametric equations of the evelule, the variables being
e and 3, the parameter. ﬁéing ¥ (¥ ¥, and y” are all functions
ol x). The regula Q’u‘teaiam equation of the evolule would

result from the elip ation, if possible, of x from the parametric

equations. L)
A/
Hlustrationy '}\“’F ind the evolute of the parghols y = x2,
\Y
Solntidn\,/ ¥ = at
' '
RA\Y ¥ =2x
,:::‘ },rr .
O :
W w244
\/ 2
v L1+ 4
d = x* LT Py i
)
o= — 4 gt 1

. s paramietric equations of the evolute.
.L?-z-._',—l-.?xfjpc - K

The rectangyiar eanation of the evolute would be gotten by eliminating x

1 . . . I 4
from these cquetions, This vields =214+ 3( _ I‘
;
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Mustreilor 2. Find the parametric equations of the evolute of the curve

A=24ywmp g,
Soluticn. dy = 3di, dv =2/
] dy 2
=% Z 2y
T T T
y”_.ﬂ:;—ug,a;?‘:g.l
dat ot d¢ 3 3 p
- $
=37 — j—‘f(l_j__‘l-'_m. <'“:.~:‘
Lam O
s-pozylise
. o ,\\\ 3
a == <!
=382+ }\

We Hst in the following exercises some of thestandard curves
along with the radius of curvature R, theﬂ«g{\jérdinates aand 8 of
the center of curvature, and the Cartes\\aﬁ equation of the evo- -
lute £ where simple or where integasﬁng. We should always
Interpret, d 5 as the parametria equations of the evolute.
Note that iy EOIIE CAICS o an@ﬁiﬁvolve orly the parameter
but thai it: other cases v is also'present.  Allowing y to be pres-
ent rather than eliminatin it\does no harm since y is a function
of ¥ and hence is de,ter(ﬂ}%ed for each vaiue of x; it merely

simplifies matters to r6ain v in some instances.

N7 Exerases

Find &, o, 4. af;?i’.-'f for the following. (In E write x, y instead of a, 3.)

i"\ a
L Pasalay R =202}
¥ =N\ b Vv .
»\i.&f‘*&:si a=3x+2}x,’8=__‘ffp§
N | E:27py = dlr —2)°
%. Semicubical parabola RoYx (4 4+ 95)
¥r= g 6
Fic. 453 e=—Ef0x+2.8=34vV3x+ 1)
2
3. Catenary rR=Y
(EI/ = -:—5) g
¥ = ke amx—IVE TR g2y
= I3

F16. 58)
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4, Exponential g+ omyE
Y = [
(F1c. 42) a=x—1—¢%5=2¢4¢"
; z e d
5. Lllipse R=ie—¢ EY (e = eccentricity)
Bix? + gty = gt ab
{FI1G. 9) B il Pl A
o = "'('34_)-33 8= - b" ¥ \i\
i@+ @f = - 09t (O
ks 2. — o {\
S e RS0
(F1G. 11} R g_;_'x‘:\bf’-’,s
ar N -
E (g ~ (by)*g\( )
7. Four cusped hypocycloid R = 3faxmk K. \
xj+yg=a‘3 q—x—[— @Jm_j;..{_gt’{'}'&
(FrG. 50) E:@ —\\:3g (x — 3% =248
8. Lemniscate . R *{"“ g
X =acnsdvens2g é\/_OaJS
¥ =asinoveos 24 \‘ﬁ 2acogte 5 Zasinig
(F1c. 65) &\ 3Ves2a IVeos g
9. Cydoid \ _ i
%= a9 — sin ) .<C> R =2VZay = dasin 2
¥ =all —cusg) \ a =g +sing), § =— q(l —coaf)
(Fic. 47) O
N S/
10. Loga.ut}umc‘égme R=2?
3 = log gy a=?5=7
(Fm\{m{z
s\

Q,l“



CHAPTER wiIl

INDETERMINATE FORMS X {\
: N
8i. The Law of the Mean. Let ¥ = J(z) be a curve withya
unique langent at every point in the interval (g, 5), g 2\'} =h
{Fig. ¢1). Let P have coordinates [a, fla)] and @ hayfg: coordi-
nates {5, fi6). It seems geometrically evident Hien ‘that at

g . ‘\‘

N\

P\

A
&
w—— 1 SN[ L X
LA [r3 Fal b
t“{ /
e G, 91
O

some pof t\f?[x, flxl)], interior to (e, §), the tangent to the
curve wilMse parallel to the chord PQ. This fact, known as the
megnvalue theorem or the law of the mean, can he stated and

g?‘sed analytically.

HE LAW oF THE MEAN, Lef Jix) have a unigue a’erz‘wk’a'e_at
€very boinl in the inlerval (a, b). There exisls an inlerior potnl
X such that

[0} — jla) =f(a), e <x <h
b—ua
In particular if f(a) = 0 = f¢ b) we have f'{z,) = 0 which states
that if 2 function vanishes at the endpoints @ and #, then there
75
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15 an interior point at which the derivative is zero,  Or again,
geometrically this would say that if a curve crosses the y-axis
at ¥ = ¢ and at x = #, then at some point between ¢ and & iha
tangent to the curve is horizontal {parallel to the x-axis). This
special case is known as Rolle’s Theorem,

32. Extended Law of the Mean. The Law of the Mean cé&i\\
be extended o as 1o include two functions f(x) and g(x). \,&{;’1:—}
lytically the statement of the extended law is as followgeys

T EXTENDED LAW OF THE MEAN. Lo/ f(x) éwé Y cock
have o unique devivative af every point in the a'ﬂ-ferﬂ%"@, b) and let
g(x) = 0 at every inlerior point, Then there  248ls an inierior
poind x such that \

A,
i — fla {%) &'
1 Sol TR S b,
W glh) —glay  gin) \.\f‘: t
This thecrem is of value in the,eyéTuation of indeterminate
forms. oL

“ N

. 2
A\

33. Indeterminate Foru@.‘ * We have already et (Chap. I1)
an indeterminate formﬁﬂ\the type g [See (8) and (D), p. 26.]
Y . |

There, by special, rhéhods, we proved that lim 3% — 1 and

T x

lim J—_DLH’M 0. We shall now develop a general method

w—s1

whereby indéterminate forms of this type (g) can be evaluated.

TO.’@}}[}'}iS we make use of the Extended Law of the Mean
anduppose that f{g) = 0 = gla) and write 1 for . Then (1)
S 82 hecornes

e 1) _ F

glxy  glxg)
where @ < % < x. Now lim 4 _ 0

T—wn g{:x} 0
0 = gla). Bui, clearly, ;> a as x -
limits of both sides of (1) we get

W

[ S

in form since fle) =

a. Thercfore, taking

@) im, ”[_x} — Y S
Ty HON "
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his last limit exists. This relation (2) is known as
R?ffe and hoids whether ¢ is finite or infinite, It

1d e emphasized that here, in order to determine lim £ f"’{
T it gl X

aily take the derivative of the numerator and the deriva-
the denominator separately and then evaluclte the quos,
tent of the derivatives, i, e., compute Irm j—"- 9 provided Lhis\:.

=

not again indeterminate.  The student s Jlould be w amed‘ﬂot Lo
confuse Lm': operation with that of differentiating a (,lJ_}.OLILnt

If Tin £ "ﬁ is itself an indeterminate form, then ﬂxé may start
W :r, '\3,

over Dfu md apply U'Hospital's Rule<ib this getting
11m:g g etc. Most of the prbr]emq that the stu-

—

Y

crdinarily meet will yield to al\lfllte number of repeated
wons of this rule. QO
pital’s Rule also apnIJes to indeterminate forms of the

e O Y T) o) S A 0
type %, L.e., to the case where m /i =& Incither type, =
¥ ’:‘«——Hzgf’lf) < Y 0O
or 0 point @ may be ﬁq te or infinite.

But there are uidz,tgn‘mrlatc forms of other ty pes, namely,
w0 17 w,,\q}‘d w —cc, It is evident that if

1 E

Bm figin) = o) O where lim fix) = oo, lim g {x) = 0, then
S » T L1

ey

iy of tvpe 5 and we resort (o "'Hospital’s Rule. Next
fim, Yix)e= = 1* where hm fixy =1, hm glx) =

By ta hg\ Ig’fdrllﬂnl3 of both sides we have (oo (4) p 25)
ior "Lgl"f’q,)w = 11*11 log flx)sa = hm gix) log fix) =

Isk;n,e lm log 1 ) = Q type and we dpplv I'Hospital's Rule at

0
g(x) () ‘
this point,  (Or we wrile iim m—éﬂ-_f_— = 2 and apply the rule if
100‘1\3)

this form is easier to handle s0 [ar as the differentiation is con-
cerned.) If Hm l‘fgi(ﬂ = b, then the answer to the original

H—a

kx)
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problem is lim f{x)"® = ¢!, In a similar way we treat tvpe

i

¢ e .
lim fix)ot% = 0° since here lim —g“liw = 8 And again this
&—ea T .
log 7(x) L.
. . . T g (}: ! o
method applies to type lim f(x)7@ = e since lim =1 =
] L g e

log f(x) .i\
Finally the type llm [flz) — g(x)] =0 — o0 can he uaﬂ

formed into type 8 since we can write 11111 [fixy — g’})

1 1 \\
lim _.1_—_.1_. :hmM =9, \‘
&L L L T _1__. . _l_ 0 "\\l
fix) gl gix) fix) ) \\
SUMMARY \
Type of Indeterminate Form \?ﬁ Hospital's Rule to:
1. lim 4 = 9 lim X ﬁi‘m LwtmL — i 7
g 0 N
5 limd — o Bhe ﬁmt one of tnebe w thh is not
g w m wdeterminate will 2ive the answer.
w\. 1 -f. T H g
3 lim fg = o Q) InnloA to Ilmul
A\ g j
:\'":“' ‘rhml g)Ccu‘ to lim %—
4. lim fr(31> =
5. lim - 00 e , oaf
. LS M | If I'Hospital’s Ru[e applied to one
: 4 Jr=o | of these yiclds b {or the limit, then the
AN answer to the original problem is &,
,.\i:\, N (1 1
N ! lim 'gl_-‘_li
2 im(f—g=w—x . 77

The answer will be given directly by
I'Hospital's Rule.

Tustration 1. Find lim & 9'r_|—_tan ¥,

T {)

Ax
Solution. This limit is of type g Applying 'Hospital’s Rule we obtain
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lim 2€082 % + sec? x =1
T 3
Uisstration 2. Find lim §E&C§@Tﬁ
dm— ) 3 x
Bolation,  This limit by I'Haspital’s Ryle equals
B 122 secty et x + 2 cos 2 xtan x =0 s &\
T 3 ' \\
"t 2 t '{‘.\;
Lustration 3. Fing lim gmox 4 tanx o\
L) 32 >
% \
Solution,  This limit equalsxl_i_r"no g_c_oeﬁ_g_x—!—_sgg = g = 93*3“‘“;

- . . ] . it
Musirztion 4. Find iim #.

W

Sefution. This is of type 0 Woget PN
&/
. P . 1 4h—1 . — a=2
Hm %7 = fim 2¥ = lim z(?l_l)x___ = .

E—min g5 E—wm g ..”.-—»-Q\.} ¥

ml L 3
= lm 2o W4

E—mn g \“s’g“

Mustration 5, Find lim {1+ ;.-jw..“
Lo \,}‘ -

Solutinn. This is of tyae cp\v?{\We write
1 é“:’i 4 1 - 1 -1_-1——.’:: -
2_12165\-1% xI}-}Eiw 1 0
Therefore '\:, Tm 1+ x)z === ],

Nustration Q\Qhow that lim fr < (p

aolutmg\Wﬂtc A =lim o

Then \\ log 4 = lim g log f
N = lint (ez}(—
O -
Therefore A =2 =0

is not indeterminate byt equals 0,

)

Hustration 7. Evaluate lim &= €7 T2z

Eme 31

x—-sm:c

Bolution, This equals 9 type.
-2 _ 0
limEter—2_0_
-0 1 —cosy a
lim £ 0y e
=0 8N x 0 z—0 cosx
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Hiustration 8. Twaluate lim {lan x — sec x).

.’.;—»5';
Solution.  This is of type © — «¢. We write
lim (tan x — sec 2}

'v-_.)'_,
lm,anx )
-lcosx o <\
2 N\

O
_ Iim(amx-—l} 0 \<wj
s»T % COSX ( ) 0
= lm 8% _ ., /’;;\\3
gy = SilL X ¢*Q
N
EXERCISES /\}}

Evaluate the following limits.

A 4
O
PROBLEM (‘) ANSWER

1. lim — % W\
et - 3w —1 SN
™
2. lim £ =654 ‘:‘\:‘
c—2 ¥ bx o § N\

3. lim 1—cosg </\\

e w\Q

g lim lPEEny

0 1{};,3%\
5. lim —é}(t, . 0]

= b= ih fo

T w B

6. z&l{;}%/ 1

. a"

7 8. lim o)
t—rn XY

9. lim loEx ?
e—+m T

0. BHm (1 — Zx) tan=x ?
il



CHAPTER 1X
INTEGRATION ~

N\

34, Indefinite [nt egrals. In Chapter IV we cata )Tthd rukg
wherehy the demvauvea of Lm s'randaid elc—memarv fu.mmr
and combinations of them could be obtained. At ﬂ’h “ime a

thergugh review of the differentiation formulac orl\pag{, 41 1s
de sl.mm For we are now 1o study the pre Geess IErse 1o that.

ferentiation, Suppose, for cxa ampile, wal \ye e given the

c?.eri ative of some lunction and w ere ﬁuea\to tind the funciion.

More fically let ’:‘;; = %% The proH &m iz to find 3, some

funiciion of x, whoso deuvmn 015 a8, U%‘ec tuse of our knowledge
0l the derivatives, we see 11 at y medf He something like But

. e . ,"N RE] &f ! 4 4

U v = x were difercniiaied, ‘\\-'ew-'oulu fave [_J— = 4 x*, which
«™y iadx

is not what was siven, H onex er, 4 £ differs from 4 only in

the v nultiplicaiive detO ;" hence if we had chosen y = 2 x4,
1\ i

we would then get ff\% %%, which is exactly what we were given,

xt+ ¢ where ¢ iz any con-

I [

There i3 «ii}] anog he{‘ point: if 3 =
stant, then %ié“h ¥ooAnd y =12 20 is the most general

3

et oll\qhose detivative is 3 = 2%, We have thus reversed
the profess and have lOUHd Lhe funmon ¥ which differentiates
mto x‘ *the fun neciion, y == 3oy ¢, 13 not unicue: ¢ can have
m:), A'cuua so long as it is con%a"n The process of beginning
Whigh ¥ and fiom it finding y is known as Integration and ¢ is
called the arhitrar ¥y constant of integration. In symhbols we

write y = j Ydx = txt Lo The symbal will be discussed

more fully later,
Clearly then we could be given f;’ = f(») and be asked to

i

81
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find 3. This means (hat ¥ 1s some function whose derivativa ig
Jix), a given function. The answer will be given by

(1} ¥ =ff x)dx

where an arbitrary constant of inlegration must ba added to

whalever particular funciion we find that will differentiate inf&

7). RN
We should like to know (he answers {and to memorize e

S

in the cases of {he standard elementary functions wighwiick

we normally work.  "To this end we develop f ormulag af Mtegra-
Uon corresponding to ihe formulae of differentiatja@cierivecl in
Chapter 1V. R
The symbol (1) for the integral comes abaisf in the ollowing
way. When a function, =ay fix), is{o ba d;f{e;entiated, We must,
specify the variable with respect to whichg}ho differentiation is
to take place. The derivative of f f{);}\wuh respect to x is ﬁji :
o/ @x
the derivative with respect Lo/ g3 symbol, g{ (or this could be

7 1 S0 in thegVerse process of ntegration we

Written .
dx \
must integrate with resp\e’@ to a certain variable. We write
O,
2 K &
vy ‘ \ ai
(3) w\.) a4y == fix) dx

. \2
Integrating l{éLh sides of (3), we get
&
@ AN v = fay - f7ir) ax
.\ " -

\x-'l;e(éjklifferential *, dx, in (4) tells us that the in tegration of
f.{\:(f‘}fS to take place with TeSPECt 10 x. This notation will have
§$?I more meaning after the material in Chapter X is coverad.

The function Jix) in {(4) 15 called the inmtegrand. Noie that
f;.;ﬁ €r = 4 %° + ¢ and that jz-‘s dh = P 4 ¢ hut that f:t::3 dat
cannol be performed until we know what function x is of £
This corresponds directly with the paraliel situation in differ-

7. -4 :
entiation where %] = 3 &%, but %’;: =5 42 E‘% and this cannot be
N £

- fx)
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compleied until we know the relation belween x and £ For

example, let ¥ = ¢, then & _ 2! _ 6 et Similarly f X di
dt di '

would become f et dt = §evt -L ¢ as the student can quickly
check by differentiation.

in the development of the formulae for differentiation we &\
generally worked with (unctions u(x). We shall do likewise i{l\
the formulae for integration. ) W

Lhe integrals I-XVIT are the direct consequence of our Jndwl-
cdge of the derivatives developed in Chapter IV, Th@-*&;zhould
be ruemorized. A

o\
T. fo dx = ¢ A\ v
o
I f.kfz'x:kfdr-——kx—l—f &
o r ot :’\\\\”}
(T iy = = — g o k21
J +1 “’:‘ .
i " . c“‘\:‘:“ . _
TV, fu dw_??—i-li:’.&“ﬂ?: 1
X ] o~
. - du = log N ¢
fll :“'\<K
VI fetr) &b ar - [ut) e [rtw) an.
The integral of @ finite) sum is the sum of the integrals.
:;\;..}
VIL \\i:}fo Q= ¢+
‘»-"'ilf_.g‘;z\ r @ e = £
NN . log «
a\Y4
\1>(. feinzul.u::—cosu—i—c
X. fcoa wdy =sinu + ¢
XL faccf udy =tanw + ¢
XIL fcsc‘ﬂ wdu =—cotu +¢

X111, fsecutanud.=secu+c
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X1V, fcsc Heotudy =—cscu + ¢
XV. f—g: =sin ¥4
Vol - gt ¢
vl f_dw 1 !
XVI. 'J E —’—_EL'_" = P tan +c )
XVIL f— _—_dzf:_: =g ¥ ¢ A \\
vyl — gt a @ 2e.Y

The

following integrals are met so frequently thag fﬁ'—zy L6
should be memorized,
from differentiation condl

standard elementary ones 1o be committedé{%emory.

It will be noted that

they @’hot come
lormulae that we have

red az the

Byt

they are nevert heless Very important and a Batwledge of them

will be of tremendous aid in the inlegratio

functions.

XVIIL f fan o du

fcoL el

fsc-c % i

XIX
XX
XXL
XXIL
XXITI

xxn;’:.\7 e

¢ 3
DT T

more complicated
AN

NV
O
N Y

: N :‘

= logsecn + ¢

~

\
AN
A g
LAY
™S

= log zin u

= log

f*\@“&\'! + tanu) - ¢

- 6k \J .
fca-c it it =~l<\}g WCECH — col) 4 ¢

~H - a c
hu\"_a 1
-+
= gy T ¢
2 “C(z—a{+

= log (v v E oy 4,

PR VI g
0“\§ \; ) .
BT o ¥ o, 3
\x)){\- [1\- @ —utdy = Ve -2 E sint ¥ . .
J s o a !
XEVL PV Zdian Ui @y s
VL = ¢ 5 TE L Slogln vt o e

It would he a simple

ferentiating the answers, thys obtaining the integrands,
we should derive these answers by

sion of the ger

matter to verify these integrals by dif-
But

way of beginning a disens-

eral methods of integration. To do this we begin
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and we know no function that will differentiate

1 examine V, w hich says that the integral of a fraction
unaraior of W'm- h is the differential {du) of the denomina- &N\
V15 log s The denominator of (3) is cos %, whose differ—

3o uin u dx. Vence we could write \\' )
B — & 2 , \ ¢
G § lan s dy = — [ . I;” d’( =—logeosu + ¢ N
Jooocosu x'\\ :
Since - log cos 4 = log {cos ) 1 = log _1 \‘],ug sec u the
L= J
form of the answer oiven in XVIII follows. N
similarly for XIX we have \&
\{\
- ©o " CO5 i ol 4 y -
7 foot e dn = J CO% g log simvd 4 ¢ by V,
J sin u g
’.:‘
To dorive XX we write N
a3
o s he . Peos u dut disin u)
(&) i 50C 2 d :-:f T et f
o b - sinta

(,Oa r(\ Cogt

we sete = win#) and this in

which iy of Lthe anm\ﬁ\

trn ig of vae ‘{ITT Ti 1Lr°10re

r N 1 4 sinwn
C Faoeile = ! log S
® v’\“ 2R ein

and t}qq\h a perfectly good and standard {orm for f soc u du,

WLozin
B’*\f‘dbﬁ“ that }—' ----- 3 _,‘Il il

/ — BIn #
ideitity, the final form XX is obiained.

There is atill another useful form for this integral:

= (sec # - tan u}, a trigonometric

feec 1w du = log lan (-‘ g:}

This may he derived from (9) by the change in variable

.

— T o
=¥ — 3 0 the answer),

L
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The integral in XXI, fcqc i du, 18 derived i1 a manner ex-

actly analogous to that used for fbec u dre and 15 lelt as an exer-
cise for the student.

For formula XXII we make use of partial fractions which
might be called a process inverse (o that of reducing a fracidh
to a common denominator. This method is explained in mxl
detail in § 37; at the present it will be sufficient to note St

L1
1__2{1_ 2a

75

- u—-ag uta . (v

by reducing the righl-hand members to a cofn}nén denominator,
thus obtaining immediately the left- han@k\membe" of ihe equa-
tiort. Hence S\
\\
du 1 du \1\ f di

{10 B 8" s
10 W@ Za z—aw Zalu +a

But each of these last two m{egrals is of form V. Therefore

~

(113 f——-—(j—?-‘ —v{bg (u - g) — == log (v+a +c

Qa— 10 + [

Since XkIlle handled in 1c1enuca11y the same way, we leave
1t to the 3&@(’:Lnt as an exercise.

loght?:tm one of the integrals in XXIV, f% we make
\ Vit - @l
uséof the device known as the method of transformations.
,\uSce §36 for a fuller discussion.) Let u =g tan»; then
NJdu = a sec? ¢ dv and our integral becomes

12) f__d“: = f gsecirdr

Vattan® s + at

- J‘ Sectpdy fsec v d
PN i

=log {sect -+~ tans) + ¢

s

r 4 ut 1 = ’ 2 g2 .
by XX. Butifu =atany, secy = X% 7 € and (12) hecomes
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X
it
]

i {it . ANTE Loy .
=g,  — ¢

\ a
=log v v+ —loga+c

. ¢ 18 a constant and hence we might combine — log @ + Q\
calling it @ new constant 2. This completes the derivatipn of
the one integral in XXIV and the other, using the mim(&’g’r‘gn,
lovws the same pattern. « W7

Te perform the integration in XXV we make an{iﬁf‘iér trans-
foimaticn, Lhis time setting # = g sin v, du = @\Ctg,% v dr. The
integral hocomes \\\,

(14 f\a -t g = f Qi eost v d g\\;

L1 e 7‘;\‘
= @ f l%”. d
S 207
o S D
= s ) oy
25 ™

celFE Sy —sinrcosr ¢
"

a1] T

v
@

This is forgimita XXV,
Pinalld the inlegrals XXVI are best treated by a process
Cal!ec@&@tegration by parts which we now explain.
R
(26, Integration by Parts. The method makes use of the
Nsimple form: of the differential of a product:

(L) dlisr) = w do - v du
or, transposing, we have

2 wds = diur) — ¢ du
Upon integrating (2) we obtain

(3) fu dv = up — fz du.
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Hence the integral fu dr is made to depend npon the intesyal
f ¢ du, which may be more readily handled or may be recogniz-

able as onc of the standard forms. We illustrate the methed
first with a simple example.

IMustration 1. Find f xe® i, ) \\

o L . ,:ws Y

Solution, This dees not immediately come under any of the standapdioises.
Let s choose 2 ~ x and @ = ¢ dx. O

Then du = drand ¢ — fc-‘ di = ¢n. (We shall add oar crms';{!\ikf.'éf integra-

tion [ater.} Then our integral becomes, integrating by, ﬁa(ts

. . . R\®;
Jz,eda' = ?.{r.-'—-} v dig
B ’,\\,

fxr?"’dft’- = gt —fe ”\,'\’{..

N

anti this last integral is one of the standa{}}\ft)ﬁm. Henee
. w4
f‘cv X = xe* *;z:;e’ T <
4 ‘5‘
LR

We shall now derive formula”® XX VI using the plus sign.
First we transform the integral by setling # = ¢ tan z and du
becomes du = ¢ sec? 2 giz‘.\\T he integral therefore becomes

&N
AN s >\ 2 a
(4 MU= du = fasecs asectz dz
= 79 \ »I’
(5 P Y; == azfsec“ zdz

. ;'\"; .
This Iag%\}f}tegrell Wwe integrate by parf(s, setting # = sec z and
de = sg=\c""\'. dz; hence du = sec z tan z dz and 7 = Js["aec2 2dz =
tax}.;{i' Thus i5) becomes, upen applying the integration by

\ﬁ/a}rté formula {3}

6; a‘-’-fsecs zde = "secztanz — aﬂfscc Ztantz dz

= g*sccztanz — rz”fsec z(sectz — [y dz

= g2 8ec 2 tan z 4 rzﬁfsec 2dz — aﬁfse-:"’ Zdz

{7} @*secztanz + g*log (sec z + tan 2) — ag‘;ﬂse(ﬁz 4z
upon the use of XX,
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the iast member in (7) is the very thing we seek, namely,

f sec’ z gy but it has the factor — 4% Hence if we bring it over
te e lefi-hand side of the equation we get

L
By Zefsectzdz ~ glsecztanz - a’log (sccz b tan 2),

W

s &\
Tinding Ty 9 N\
or, Jividing by 2, N\
A ,:w::.
. S as . at ”
e wrlacctzds = —secztanz + 5 loglsecz —tanz). ¢ \,

Finally transforming this back into the variahbles \\vc have
XXVT or O
\\

_—2— a* dig = % TR —|— lo;, (1t 1—\}1 (;’\ -+ e

g

The q*rluenL should carry through XY&\I when the minus sign
1t. [y ‘*.

’”m completes the derival mnxa[ ‘the standard formulae of
integration I-XXVT and we nQ’w further illustrate the principle

of integration by parts w Ltl:(\
e

¢ '&,/
Tiustration 2. Find f }&Em x dx.

Solutton. Set u —\ 2dr — sin x dx
iTlw ofyject i3 >§\L0 chocse w and dr as Tsf to make dr integrable and 2rd to

nake r'xfi'?a fimpler than the original f )
Here ffuy\ xdyand ¢ = — cosx. Then

™
™S

e 9 i g s o
»\; 7 FEM oy — — A7 cos - | 2 cosxdr.
ote that this last integral is of the same type except that we have x instead
of 2" as u raultiplier of the trigonometric part.  We therefore apply the

rule once more (io fr cos x dx) sefting v = v, dr = cos v dy which gives
e = dx and # = siny. Our integral becores
I . . -
j Meinydy = — xPeosy + 2y sin x —fs:n X dx]

=— 30085y —2xsiny +2c08x+ 0
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Tstration 3. Find fef sin x dx.
Solution. Set w = ¢, dv = sin x dx; then di = ¢ dr. ¢ = — cos v
fs’ sinxar =— ¥ cor x ffe* cos ¥ dx.

For the last integral set u =~ &%, dr = cosx dx; thende = e*dvand e =

gin x. QOr \{\
fe‘ sinxdy =— "oy — [esiny —fez Anxde] L \
&\
. . (NS
Thus, transposing the last integral, \
s\
2f63 sinxdr = — e*eos x + o780 1 '\\

Ox'
\V
NN
-

or finally

e B SR e\
fe— dnxdy = ) (5in & — cos x) :i—{g,

W

. . g——— \";\
IMustration 4. Find f Pviat — 2dxn NNV
O

Solution. Sets = 32 gp = xvVx2 —.‘2"‘1?53
Thendu = 2xdg%md r = §(x* — 2¥ by IV. Thus
f?C3V'JJ:GT2 dx =~§{f}§* 2)F — jf’“”c’ — 2yidy

But this last integral is am‘m one of lype IV, Hencee
_ 22\ .'x 4
0 S v X ognd a
. f #Va I =S - — 5 2 -2 4o

Only by sol¥mlg many problems will the student gaia profi-
clency in:i;{lis’ method: it is not an easy matter to chaose the
parts 2 @ud dr without wide cxperience.

It s%@?.ild be said that a particular problem may not vield
readily to this method in which case other methods shonld be

,,,\Ljr)ea. ‘ Among these is the one of transformations already used
N\ n deriving several of the standard formulae.

36. Integration by Transformations. No general rule can be
laid down as to what transformation will reduce a given integral
to one of recognizable form. But in certain cases particular
transiormations automatically suggest themselves, Since the
Pythagorean Theorem for a right triangle states that the square
on the hypotenuse equals the sums of squares of the two ¢ides,
an appropriate trigonometric transformation might shmplify 2
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integral involving such quantities as vVa# — @3, Vil T &,
%, For example:

z ic, present, trv # = g csc 4.
@l s present, try # = ¢ tan 4.
..... a — ¥ 13 present, ty #

@ I 6.

///va

_ . Wy

fub succes: is not assured A

when such a trans- .
arion iz used and it may

¢ necessary to apply other Vit—a N
meihods,

2 QAN
stration 1. Find [ ;:_Ef-r N
e

s
12

Sobution, Set v — 2sind, dr = 2cos ¢ 4. »'\'w
~ i
i The student should draw a figure and no\};}t}at -l' == tan £.)
x
(- x_ dx = —1fqm,$‘~t'1r1 7 cos 0 do
RV

= if Sin® 4 dy

This last integral is Idella?\L\ndled by writing

g\}h P 1 —cos2y
) yx_%dt_ = Ef(l — cos 2 8)
;m; V- xﬁ

\I., =20 —sn2d+¢
' "X“' =28 —2sindcosd ke
~’,:‘\ =2 sin“lg - 5»4 — x4t
o E
M\) b : % dx
\/ Hustration 2, Find f — e
(x2 + 9%
Solution,

This recuires no transformation since it is already in standard
form IV. Write

rdx 1
L [ g B
/ (e + O AL e

__1M1
2 - e

}

L
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usiration 3. Tind J sini x g,

Solution. Write this as
J{] — cost ) 3in v gy —f(sin ¥ — cost v ain &) dy

= LDR X oy CORF g,

ustration 4. Find f < A
) + 3 '\«.o}
_ N
Solution. Set % —¥'5tan g, \ "w
dy =v'3 sect ¢ d¢ ’\o\’u:.)
dx rit Ls
f = Lfcos*ﬂj()zscc ?';z'ﬁ\}\
(5 + a7 by \w

= lj{‘co ada \\

=g 5 ! ) t;\\'

=lsing —\r,{(\

-1 i—g\l' €

5 v”'-_;_ ol

Again some other Lr'lmf(srg}mtlon may be suggested by iho
parlicular form of the fum(rt}n 1o be integrated.

Hlustration 8, ]"md \ "
Y+ 5 —vx + 3

Solution. Hore 1t¥'m reasonable to think (:l' _ix + 5} as a new variabic,
Because of the Bquare root rerm We et Vi + 3 -z then x — 5 = 2
and Jx —M; Our integral becomes

gfi dx__ fﬁza’z__
\ii) x+5 vyt & -z

o|||

LN\ o dz .
&:‘\ —ZIZ_I—Zlog(z-—l)n;—c
{ ;“ =2log (Vx 5~ 1)+
Wustration 6. Find | — :dI:.- —
vVt -3+ n
Solution.  II this could be thrown into the form f 7d”_ this couid im-

A
mediutely be integrated by XXTV, Thet this s possible will be scen after
a little reflection upon the process of completing the square, We wiite
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Mo set - § o= 2 and we get

iz ' e
= =l s VET D 4
Jv T
+
=log i -2 +Va o8y S 3) e

nringiple of completing the square should be applied to
& of the form XV, XVI, XXl XXVI which contain 4,
Hnepy term o in '1(1(‘11"';1(311 to the quadratic term #¢ and the eop-

//

stond 4% We illustrate with another example, \\
4 W
fifnatration 7. Hndf (B '\"\“t

wotution.  We first write this in (he form

a0, =
[ 0y

S+ ErY

tor in the denominators is the sa “‘1L\§\u3 the original integeal.  The
stor of the Arst integral in (a) xcl Ie [chosend Lo be the derivative
i This is done :J(fwz Jan that integral is of the sland-

Y s Lo {dn
acd torn. 1, f“f Fhe mulup'mﬂm [eotor & will result in giving us the
il
2a+ q
et our — & term in t}gé\wu;al integral. A mrrml ar
\ i [44
(i} %1()§(1‘+2X9) ...SI”I.__. .

s 2y 9

3 term that 13 needed,  Bi {SQ v — b[ . 15 zdded s0 that we

wer 13, therclore

PAS.
Wonow compl:e‘te\tﬁe square in the integral remaining in &) and this integral
Becomes I

4 '\z“
\4 dx dx
e 4 = N
* ;\§ f‘ +2x+9 f(-*: G- 1F+ 8
L}"S{t‘let ¥+ 1 =z dx = dz and {c) becomes
N/
<> dz

8

which is of form XV1 and which equals

I z
—-lan™ -
V8 242
The final answer then is
f 2x -5 3 / xl
IR e _ 2 n 9 a - V' fan™t- .
J¥yEy zlog(x + 2 ) — 2v2tan 0\/9‘1—



. Dlusg-atlon 8. F .11.1d . f m ) . -
-Solution. “We treat this in the same way we treated the problem in Ilus-
SMation 70, R
s -+ 1) dr zl-'(zl_x'-_—.ti)dx +zf dr
CJ2Ze—4y 5T ] 2x*—4x —5 2x*—4x -5

. S : dx "\
. .. = 1 _ - — P
o - mhog@w-gg 5)+2f2(x2.——-2x'—--‘3—) A\
“This Tast integral equals _ : +O\
o o . dr - R ¥
- Nowsetx —1 =7 gr = 42 ang (a) becomes CN
T O

which is of type XXIT and which cquals O

it sVE Y, VD) vy
2vi 2+vEo 14 t{%@:-;wrv’?

Hence, finally - W Y S

log

SNCEE) Y S DO N Vid V3(x — 1) =7
Zx iz ~5 108 @n — 2y 2 V1L, ) R A
122 -4z =57 40 R T Dgx/z(x_l) IRV R

Because of the complicateg factors involved there seems to be no point in
Combining these tefmg, "\\. _
The impdrtar}t fagt‘\t‘nbe gained from the last two illustrations

i's.t}_;gt_ integrals .qughe type f 3%% always reduce by the

mﬁst:{%'s. [x + 30t 4y,
. Sﬁ‘-‘“““ _ The substitution 7 +3x = 2 seemq Teasonable one since this
TN Sl ratxonaliz_e the integrand; gy — Eo - .

N :
fx(7+3x}%r_dx =ff§2.z.2adz

=f(§ ;g_za)dz .
2 L

. ‘————l - :
AT te

N T U
a4 It

:
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Again we repeat that the student will gain knowledge of in-
tegration by means of substitutions only after solving many
problems and making many false starts; what seems to be the
“phvious” substitution to make often proves to be of no aid at
all in a particular problem. .

There is a third standard method in use in integration beyond
the method of integration by parts and the method of trans,.
formations. This we discuss in the next article. ’\\

37. Integration by Partial Fractions. This method, & par
ticularly useful in the integration of rational fractions (ﬂ'xe quo-
tient of two polynomials) where the denommatqg “has real

factors. Suppose the integrand is of the forny x%
—m where the factors of 2 -+~pgc + g are (x — &)
(x —a)(x — B

(x — 8). We suppose that ax + & ls\not one of these factors,
Algebraically it is evident that constants A and B exist such

that A\
a) ax + b ’E A B ,
(x—a)x -Bh x—a x—f
because if the right-hap€ members be reduced to a common:
denominator, (1) beco{n
@) ax + b \ A n B EA(x"ﬁ)+-B(x—a)
x—a)x =B r—a x—-§ x—o)x —B)
;:.\' (A+B)x+(—A,8 Ba)
> (x = a)(x — B _
and A%nd B can be determined so that 4 + B = ¢, and
AB 4 Pa = — b, (In solving these simultaneous equations by - -
detlerrnmants we find '

AR |
=t ge—b 11 l o
A= I—-—T-l—, B = 1 ' and ﬁ o 24 |8 = D’ .
1B a 8 «a '
* since we suppose that « is distinct from 8.) Hence
3) fax +byde _ (Adx Bdx

x —c)x -8 L —-a x—f
=Alog(x —a) + Blog{x - 8) +rc



lllustmtlon L f xz—i-gi—)g

R e B
' Solutlon - —42 x —'—'7+'x +6

ST 2zeg- A(x+_6} + B =1
gmmdé%,3=f

R -ax _ dx 15 _dr - O
P .xs_-'_'_x—42 13 x—? x+6 \

—3—}10g(x—-7)+ l()g(x+8)+c ¢!

) -Sometlmes itis convenient to write the arbltrary constant of. mtegratmn asa
loganthm ie., write ¢ = log &, Our answer then become&*

og: (x ~ N 4 Tog (r + 6% 4 log & = log klx — nré{x + G)ﬁ

6x3—{—17x?+13x—6 . \’
mustmt(on 2. f wad I\

“Solution, In case the numerator i of the same tl\gree a5 the denommator
' (or of higher degree), the first thing to'do i Ja/to, d1v1de out l}.ntll the numer-
ator is of Jower degree, Upon dwldmg we ﬁnd :

6x3+17x%+ 13x—6 '2+1~3~x2+1'5x—6-

_ 3xa+2x3—— ) x=+2x2—x
o _-_We now factor the dennnunator angi wrlte L
. B tisy_g A _cl

B~ D(x + 1) X, §x~ x+1

:-1'3x2+ 15x -6 = 1&(8.: =D +. l}-l— Bx(x + 1} —i— Cx(Sx -1

B Settmg X =0, x L % =_1 respectwely we compute A -—6 B=1,
=2 I-Ience~

6+ 17132 - 6
f 3xa$§ g & f(z-;- +3;:—1 x+1)
'\,,. -.-—2x+610gx+110g(3x—-1} :
\\ s _ - 2logx 1) +loge

N . *_ '3y = 1yh
O SRR

In the case of a repeated root there is a shght modification of
the process. It is evxdent that ax + b could

aE w)(x = a)(x a)
ot be written as the sum of three fractions each- wu:h constant
lumerator and finear denomlnator That s .

i ar + & B
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since each of the right-hand members is of the.same type. ' In
“this case we write : o
ax +b __A4A ' B : c
x—a)x—a)r—a) x—a E—aP {x—a)p

from which ' o
' _ ax +=AG —a) + Blx —a) + C. O
The numbers A, B, C can now be determined in the usual wa\y .

and the mtegratlon reduces to the types f U and fu“ du

Mg

Hiustration 3. Find f %ﬂ o\
Solution. Wm;e ¢ \ .

-5 _A c \)d

x(x — 1)@ x+x—1+(x 12 ¢ '\"

2 —5=A(x — 122 4 Bxix -\1) + Cx
A=—-5 B= 6, iC~= 4
Hence _
(2 —5)dx _ dx
fx(x_l)s— 5f & 4f(x~1>*
1 +loge

10g’ ﬁ,,_“ 1) +
A

In case the dénominator cannot be broken up wholly mto'
real linear factors then another algebraic modification is neces-
sary. Fop Qach non-repeated irreducible quadratic factor ap-
pearmg\ri \the denominator we must have a partial fractlon of
the foﬁl -———-—ET ;’ ‘f_ the numerator of which is a linear fun

o txéh An exa.mple will make it clear why this'is so. '
B2 —x — 3 dx
PSS 2 )

* Illustration 4. Find f 7

. 32 —x-3 A By +C
Solution. T TTA Ly 4 1) x+l Ftr+l
(a) 3x2-x—3—A(x='-+x+1)+(Bx+C)(x—|-'l)

We note that if the second partial fraction did not have a linear mq.merator
Br + C but instead had just a constant D, then we should in general be "
unable to determine the two constants A and B satlsfymg the three

~ conditions implied i in (a) . g




98 - S chax |
Br_z_3- A(x¥+x+1)+D(x+l)or(1)3 A @ -1-A1D

and 3) =3 =44 p; it 13 ohwous that conditions (2) and (3) are
Inconsistent. | '

- Returning to (a) wecompute A

=1, B =2,C= — 4and ourintegral becomes

: (32—« A5 —x —3)dx 2x —4) dx
(b)f(x+1)(x2+x+l) x+1 4+l

(2 1) d
~log 1) @2t D _ fﬂﬂ‘i‘\\

~10g(x+1J+log(x2+x+l) )
10 _2x4—1
_v,_tani *K{_ +e¢

The last integral in (b) is treated in the: manner of Inustra,tie% §36.

- If repeated quadratic factors are present tHe s1tuat10n is still

rrore complex arlthmetlcally, but the prolen Presents no the-
oretlcal dlfﬁcultles .

N\
\ }
i (x3+x—3)dx e\
Blustratlon 8. Find f 2o 2y Q \/

Solu_tmn. We write - ’~
’ a4+ x —3 Ax «P’B

=2l +
F+2x+2p (2 +~2x+2) (x2+2x+2)=

Here A =1,B =-29,¢ = \D—-I Hence

@ fx3+x—3 Gt x = P g r -2 f(Bx—f—I)dx
(xﬂ+2 +2)‘2 x2+2x+2 (x2+2x+2)2

The first integral on the right reduces, by methods previously used in Tllus-
tration 7, §S§~ t01 Iog(x2+2x+2)—3tan“1 (x + 1). - We break
the secoqd\: fegral up into two pieces as follows: S

'l‘Sx +Dde Q_x+2}dx_-__ dx :
Jﬁ 2x+2)2 2f(x?-i—2x+2)2 f(x2+2x+2jl*

L )
\, R 2f(x2+2x—|—2)e

This last integral is best handled by the reductlon formula 33 in the table
of integrals (Appendix B). Usmg this with ¢ = 1 7 =2 we get

dx L
3 ‘2f(xz+2x+2)2‘ f‘(??fﬂt‘ﬁ

___2 x £+ :
[2(x—|-1)2+1 2f(x+l)2+1
x+1
m*“ﬂ‘(ﬁﬂ
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Combining these partial results, we get as the solution to our problem:
a3+ x — Bdx _ x+ %
fx-’+2x+2)2 21°g(x2+2x+2) P2z 42
—4tant(x + 1) + ¢

We summarize the general princip]es of integration by par-

tial fractions. ' ~
First divide out until the numerator is of lower degree thén _

the denominator. . There are then four cases. Where the.de-
nominator has: (®)

s
i

Case I. Non-repeated Linear Faclors. \\ ~
For each such factor write a term }—— Each such par-

tial fraction integrates into a 1oganth@,’

Case II. Repeated Linear Faclors \( )
For each r-fold linear factor Write‘the sum

4 A N A
x—a+(x-a}f‘+ +(ﬂc—a)’

The first of these wﬂl mfegrate into a {ogarithm; all of the
others are of typg }u“ du.

Case IT1. Non—repeated Quadratic Faclors.

For each Soch factor write %—fi— The integral of

a«"¥ such fraction is accomplished after the methods of -
Hlustrations 7 and 8 in § 36 (by formulae V, XVI, XXII -

SXXIID).

\ Case IV, Repeated Quadratic Faclors.
For each 7-fold quadratic factor write the sum

1x+Bl + Ax + B e - Arl'"l‘Br"'.
rpr+qg @EEpxt@? (x*+ px + 4y

The first of these is integrated as in Case HI. Each of the
others is integrated as follows. Write

(Aux + By dx _ 2x+p)dx - pAN[_-_dx
F (x4 px + ) f(x2+px+q)f= +(B: 2')f(x=+px+q)*_



The first integral on the right is of the type f w'du. The
~second integral yields (aftef-'_"f_:_t_nﬁpletiﬁg the square) to re-
-peated applications of the reduction formula 33 .in the

- Table of Integrals. S o
- Since every. polynomial is factorable into linear and quad-..

- ratic factors, the method of partial fractions will integrate anys

rational function (quotient of tw'oﬁolymmjals). O

. S . . 8 .
~ 38, Integration by Tables, Many integrals have beeti"com-
puted and catalogued in so-called Tables of Integrals. ¥ When

a given integral does not readily yield to any of the three stand-
ard methods- S o R\

Method A. Integration by Parts, . - N S
Method B.  Integration by Transformations or Substitutions,
Method C. Integration by Partial Fgﬁttions, . o

then it may be possible, by the usewdf these methods, to throw
the given integral into a form that can be found in a Table of
ntegrals. Therefore, we list @\vfourth method of integration,
{ it can be called such,- . 7 .. Lo _ .

. . A\ o
Method D. Integratiqr{:l}y Use of Tables. :
A short Table df.Irite\grals is added in Appendix':B.' o

o \;;'\' " EXERCISES
1;.fs.h1§w;0052xdx =_%Sin"2_x—f—r:_
2. j:%v—':—z;;dleog(e*%eﬂ+c

,'3;«3‘4xé?*’dx=ez='+c

4 fsecﬂ(_sx'—l)dx=%tan(3x‘.-1)+c'_ :
.B. c9c2xéot2xdz=—%csc'2x_—l_-c

_ dx 5 _.x+.2 :

® Jevirio=s = s e
L dx w241

[ et Vg te
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8. f3xﬁeﬁ=dx =.%e’*’(at:?—x—l—é») +¢

e

}c+x/"
10. fl+ex=x—log(1+eﬂ’)+c

11. ftan“ixdx=xtan‘1x¥%;10g(1+x2)+c _ . @
12 f{x—?.)dx — 2 . ,.\'<"f1
clxtd4x -5 : o : \.\-',_
. ) ‘\\.\_;‘,
e
}'\\\\; ot
N
O
8O
N




C_H_APTER X
DEFINITE INTEGRALS

39. Definite Integrals. So far we have added to each i e
gral an arbitrary constant of integration and so the answer}as
been indefinite to that extent. This is proper since twé fanc-
tions differing only by a constant have the same dérivative.
All of the integrals discussed have been therefo(t!”»indeﬁnite
integrals. We now wish to discuss integrals k.@&n as definite
integrats, SN
Suppose we wish to find that function y of*whose derivative
is f(x) and whose value is y, wheh“x = x,. We seek

¥y= f f(x) dx satisfying the conditiopghe Yowhenx = x, Let
: . e\ : .
_ the indefinite integral of f(x) be {I@‘)' -+ ¢; that is

W ¥ =R = Fa +c.
- To impose the Cohditioz}. (‘;&yﬂ when x = z, means that
2 y:n'§¥(xn) +c .
- and hence that ¢ i&@etermined:

® O 0= — Faa,

Thus the solut}On to the problem is
) ¢ ¥ = F@) + 30 ~ Flxo), o
wmd\z}dﬁces toyswhen x = x,. The function ¥in (4) is there-
fore'definite (there is no longer any arbitrary constant in ) and -
~satisfies the initial or boundary condition ¥ = y, when x — Tpds
Nit' is called.  Of course y still depénds upon z. '
Write (4) in the form ' S

® Y= o =F@x) — Fxy) _
and cally = y; when x = x. Then {5) becomes
(6)_ Y1 — %o = F(x:) — F(xg)

= [1® dx., ~ [506) dios, o
_ 102
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This difference .is' called the definite integral of f(x); it is a con-
stant and does not depend upon «x at all. Hence the ’
" DEFINITION.  The definite integral of f(x) is the difference be-

 fween lwo values of the integral of f(x) for hwo distinct values of the
variable x. This difference is usually represented by the notation

J:f(x) dr. Thus

@) [1@dx = Fe) 0~ PG +¢] |
= F) — Fxo). O ;
This is read “the integral from x, to x, of f{x)"’; xLQ’calIed the

upper limit, %, the lower limit. Or again x, and #{ are called
the limits of integration and the finction f{x) fg integrated be-

tween the limits % and x1. RN
: t
Dlustration 1. Find f (2t 4 &) dx. \ \\
Solution. f (xt + ecs) dy = E + gm]
' BE+ -0

\‘ =e~§

Hlustration 2. Find f Tsix{:;ﬁ‘x.
" 0\ ;
Solution. f sin ¥ di\k— cos x:| =1+1=2,

N EXERCISES

1 \gl\i x4+ dy = a
TcosZ:rxdx—O
”. VO g = 2
/ 3. j(; -—xzdx—- 1

b dx
— Ib
4. j; x log .

B .f‘(sx«—z}dx=ﬁ—2t_'

b dx _1 o —3Na+3)
L s %+ i@~ 3)

7. ftanxdx log2
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8. fjl(x?+x3_) dv = 2
9. jﬂl(2—x3)3dx=%%1
5‘2 =7

19. £ SN2 x dx =7

40. Improper Integrals. The question arises as to whit®
meaning is to be attached to a definite integral when one\{or
both) of the limits of integration is infinite or when hg, inte-
grand itself becomes infinite at or between the limits of irtegra-
tion. When either of these two things happens t}@‘iﬁtegral is
calied an improper integral. ¢

Case I. Infinite Limits of Imtegration. AN
Congsider f mf(x) dx. The value of this infegral is defined to he
J ¢ ¢
, R
z.l_lfi faf (%) dx provided *this limit eXL?;?%\;

7
Tiustration 1, Find f mg—aw dx. N
] JO8
& N 7
Solution. lim e dp lim | — 2 g—ﬁr]
b—wom JO N p—s g o
AN — 5 w1l o 2
\ b—-rrnw [ 5é + ‘§]
Therefore ’ E e dy = 1,
Hlustration 2. N |~ 9%.
A T X
9,
Solution, (™ m g _ lim (log b
'n\.\w' b—em J1 X ‘_g.l,mw (Og )
R = o

e « dx .,
{{Bgee we may say that J; S has no value or is infinite. We write

\/‘ r dx = o,
X
* Iustration 3. Find j'; °ﬂooss % dx.
. B

Hution, limfco &% = lim (g

ﬁ’. r— Jp TR T alf,nm (sin 5)

ars sin & approaches no limit at a1 436 — o, the original problem has no
6 : f e dx does not exj i

(6) er | cosxdx Dot €xist, has no meaning,
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Case 1I. Integrand Discontinuous.
Let f(x) be continuous in (a, b) except at x; and consider

frwae so0 =0, asmss

The value of this integral depends upon the behavior of f{xh,
in the neighborhood of x, and is defined to be N

N

h d 1_ T — €1 . il ',\f' »
J;f(x) Y = e]1_1_130 L fx)y dx + irﬁ]u .[m-ﬂﬂx) d.f ,

provided the right-hand member exists (and iw’j;%ll’t not an
indeterminate form of the type 0 — c0). If x($+b, say, there
would be the obvious modification N\

)
[T ax = tim f""}@’w
J&) ¥ =lm | \\\" %) iz,
\'
9.
) R\
Bsstration 4. Find [ &%
-1 xi ’,’:‘&

TR Y

Sclution. The function becheé"inﬁnite at the origin. Hence

\
de _ 4 %{‘ dx . ldy
S o e, [

= G 34| 4 Jim 34
0 -1

\f_* 30— e q(_ml)‘] +£21' 311 ~ &
al lim {—e)s — (= 1} im — ¥
"\3{'\ g —} ef ==}
’\&; =343
R
o)
N . 2y
\ Allustration 6. Find N

Solution. The integrand becomes infinite at x = 1. Here we define the
value of the integral to be

: 24 _ _____1___]2
zh—rn-nu J;+e (x ~ 1) B el—]in() [ (x — D) hite
= lim [ -1+ 1:I
£

0

= o,
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Ilustration 6, Find f 2 tan x dx.
. -z

Solution. Here the integrand hecomes infinite at both limits of mtegratlon
We write

iy LAY . P
fz tanx dx = lUm J"z tan x dx &\\
T L] ] ™
3 a—>0 —yte

Oy
where these two limits are to be taken quite independently of ther,

‘111-?3 log sec ( ) log sce ( 2 «)’R'e}i]

= o0 — oo,
This is indeterminate and the original integral has\ *s&;leaning.
’\ v
EXERCISES /\\
0 NV
f etdy =1 . W

1 &N°
f g =y = — ™y
1 Ze N

o

¥

b

fz ersinxdr =1 L.

_dx ,
& f_: Vi g “"\\\}

. j:(l ix x)‘ &rﬁeamngless (=0 — o0)

Jﬁ%’uﬁ{y

[ ]



CHAPTER XI
APPLICATIONS OF INTEGRATION ~
\

41, Areas. Consider the curve v = f(x), and the area\A
between it, the x-axis and the two ordmates at x = Q, = b,

i 1h§1,, by integra-

tion, the area 4 could be found, Examme F{g \.JS and let A4,
for the moment, be the vari-

able area between the fixed ¥ O
ordinate at x = ¢ and the P, }
variable ordinate at x = x. O
Let AA be the increment of _ {0

area between x and x + Ax. 3%

If it were possible to find an expression for

Define 7, called the meafi® oA
ordinate, as that quaniity
such that &\\ yi |7
AA = 58600 X
Then ‘3\ r=d FE:;I x=b
LE PN ' Fia. 93
(1) e 5’

and itxzﬁ{geome_trically evident that ¥ >y as Ax->0. Hence
in th@ifnit

2) dA

dx

\/ Wh1ch says that the rate of change of area per unit change in x
is, at any point x, equal to the ordinate y at that point. Inte-

grating (2) we get
(3 A =|ydr

=Y

As vet this is an indefinite integral and consequently does not
represent any particular area. If e wish the area under the

curve and between the ordinates at/ x = ¢ and x = b, then the
107
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area A must be counted as zero at x = ¢ since that is the start-
ing point. Hence the boundary condition 4 = Q when x — a.
Performing the integration in (3) we get, say

) A=fydx=ff(x}dx=F(x)+c.

If A = 0 when x = g this becomes 0 = F {a) + ¢ which deter\{\
mines the arbitrary constant ¢ = — F(q). Therefore O

(5) A = F(xy — F(a). O )

This gives the area under the curve and between k) aQand any
other ordinate y(x). Theareafromz = atox = {Wt)uld there-
fore be ' QS

(6) A = F{b) — F(a). PN

But (6) is the form of the definite intggrajl {fbf(x) dx, hence the
THEOREM. The area between the badrve ¥ = f(x), the x-axis

and the ordinales erected at x = ¢ and ol x = b is given by

e Aafs ax.

This area will be positi\fg\i}\%holly above the y-axis, will be neg-
ative if wholly below ¢he x-axis. If part of the area is above
and part below the xsaxis, (7) gives the algebraic sum of the
positive and negafive pieces.

N4

Mustration % Pind the area under the curve y=xfromz =0tox =2

)™ 2
Solutiopy\ A= f ed
KA 0"
N 22
O - =3,
\} = § sq. units,

Tflustration 2. Find the area between the r-axis and the curve y = 32 —
* — 12 bounded by thelines ¥ =~ Oand % = 4.

Solution. The curve lies below the x-axis between x = Dand ¢ — 4,
4
A= s -2

22 o
=152 12;;]rl

= — 184 3q, units,
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Although the area turns out to be negative in the problem of
[Hlustration 2 because it lies below the y-axis, vet in most cases
we shall not be interested in the sign of the area. Hence we
would take the absolute value of the area and give 134 sq. units
as the answer. This procedure will cause no trouble unless, in
a given problem, some of the area is above the x-axis and some
below, in which case the definite integral representing the ared®
when evaluatecl over the whole interval will add algebramall}
the two areas. This would not give the sum of the abgoldte

values of the areas. Therelore such an integral must he\btoken
up into separate integrals for the positive and negakQZe areas,

Ilustration 3. Find the total area, regardless of signy cbntamed between
the x-axis and the curve ¥ = x(x + }{x — 2) (Fig) 94)

Solution. The curve crosses the x-axis at x = —\} A0, 2. The total area,
regardless of sign is therefore:

"\

A = f (x‘*—xz—zx)dx—f{xar—x — 2x)dx

= F Zf;—x] '[J"b ——9.3] ]

=i—(i+la-,l)1«—[4-- -4

~ il - QN /

= 1ig¢ ‘3(1 U‘\nus 5.4

Conditions of gymmetry should be /

made use ofy (ghere they exist, to
shorten computations. If the area is
symme*\ri;j‘;with respect to the x-axis, F1G. 94
set upgthie integral for the part above
the x-axis and multiply by two; etc. The student should be
&UTe that symmetry is present before he applies this principle.

) 2

]

THustration 4. Find the area of a circle of radius 7.
Solution. Let the equation of the circle be
Xy =
A=af Vi

x LT
_4[ 72— x2 4 sm :I
7o

= g7? 8. Units.
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THustration 5. Find the area common to the two curves ¥ =x =g,

Solutien. These parabolas intersect in the points (0, 0), {1, 1). Hence the
area included by them is the difference of the areas under the curves;

that is
1 t
A=J;x/§dx-£xﬁdx
2.4 & QO
_[ﬁx B 3]0 \\
= %sq. unit. V)

s !
£y

Generalizing the example of Illustration 5 we get (seg’ Tfig. 95)

the area common to two curves: O
S\
B [ s X Y
§8) A =£y1 dx —J;ygdx v/
» \)
= 0r — 39 dx O
& \\..\\
v u=a -
¥, =f1, @) N ae=0i(y)
1701 a)
L\
Qe
o '.\”j L Tr=g (%)
i), SN i
z=a  Lx=b
Frengs Fre. 96

INY
‘"‘\{' . . . .y
If theeurves are situated as in Fig. 96 then it is not conven-
ient toperform the integration with respect 1o x.  Instead we
transform the integrals (8) into the following
~\J

\(9‘). a=[rdy ~[Tay

where x; = g(y), 3 = &(y) result from solving 3 = fi(x) and
¥z = fo(x) for x in terms of y. .

Dlustration 6. Find the area common to the curves 2y — 12 =x and
v—1yp=x—-1

Solution. These curves intersect in the points (2, 0), (2,2). Theareais
given by
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] 2
a — [+ 6~ D9y - [ 20— 1pdy
2 ¥
=f011—(y—1)21dy

. 2 y==2
[r-0-07]
=2-3-M
= £ sq. units.
If the equation of the curve
s given in parametric form
x = f(), y = g(f), then the ¥=0
area formula (7) becomes

a0) A =[yix = [eera, EiG/OT

where x = awhent =¢, ¥ = b when{ ;-;'ﬁ"

{

In polar coordinates the area form:{af\ié“

W

th

Iflustration 7. Find the area mldégrfzf}le arch of the eyveloid x = a(f — sini),
y=al(l —cosf). (Fig 470"

L\
Solution., A = f {“d?g\

A__‘.\}S;u(l —cos{]l — cos ) dt

For one archy ‘Q?;Léill'rom Oto2x. Hence

=a9J[; "Il — 2 cos £ + cost 4] dt

N . oL 2
O =a*[£—2sm£+9}t+%sm2£:[0
\/’ = 3 7e? 50, units,
This is three times the area of the gencrating circle.

Hlustration 8. Find the area enclosed by the cardiold » = ¢(l — cos d).
Solution. A=13 f 02 o
v
= },,f a*(1l — cos 82 410.
4]

By the methods of Iustration 7 this equals § w2 sq. unifs.
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_ EXERCISES )
1. Find the area of the ellipse %% | a%* = . (Fig. 9.) Awns. wab,
2, Find the area under one arch of y = sin x, Ans, 2.

3. Find the area cut off from the semicubical parabola (Fig. 45) y* = 2%
by the line x = 4. Ans. 25E,

4. Find the area bounded by the parabola xF 4 y’f = g% and the coordinaté\".
axes (Fig. 43). Am‘ 5

5. Find the area of one loop of the lemniscate x = g cos #v LOS 2\.6 ¥ =

asin#veos 26, (Fig. 65.) Ans. &
p A‘ 2

6. Find the area of une locp of p = @ sin 2 ¢ (Fig. 63). '\~ Ans T
s B8 $ 8

7. Find the area inside the circle p = gcos @ d{d outs1de thc cardioid

p = all —cosé). \'\{.\ Ans. T (3\/_ —

42. Length of a Curve, In rectax;%ular coordinates the dif-
ferential of arc length is (see (3)_ §;28)

1) ds =iz 3 i

@ 1\ ( 2V
3 \\F AL+ (&) .

Therefore, g@gg (2) or (3) the length of a curve is given by

@ D7 s=fa=[VTTrau
& [T

. I‘ﬁustratmn 1. Find the total length of the circumference of a circle of
\ “radius 7.

* Solution. Let a2 4+ 32 =

-Then xdx 4 ydy =0
v _ ., _ _ &%
or dx—y_ ¥
y’z-x—f
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The circumnference C is therefore given by
C=14 f : rd*c N
[ 72 — x2

. x|
= 41[5111‘1—]
7 1o

= 2 wk.

In polar coordinates the differential of arc length is (see 4\
§26) A+
) ds =Vdp* + p* dFF AN

T o D
(6) = Nt + (2] a AL
.\\ 3
2 {l
) 1+ L) g A
dp \ v'
Length of curve is, therefore, y \
&w
(8) = [as = f Vi @v\da
[T
Tlustration 2. Find the leng'th of’iﬁe cardioid g = all — cosp),
Solution, = a‘~5m 4
& = g% sint g
t = ag*{1 — cos &) + a®sin®d
\ = 2 g¥{l — cos )
O Iy N Ty
:\'","' 5 J‘; 2ad(l — cost) d
A ar
L) 1 —cosg
Re o[,
’."\.{" .
w = 2o 1
i§ ) 2aj; sin & 6 48
R 2
AN =2a|:—2cos%a:|
\,,,>& , mBe ]
EXERCISES

1. Find the total length of the hypocycloid of four cusps xf 4+ y3 = a4
{Fig. 50.) Ans. 6a.

2. Find the length of one arch of the cycloid x = a(¢ —sin#}, ¥y =
a(l —cosm). (Fig. 47.) Ans, 8a.

3. Find the length of one revolution of the spiral of Archimedes, » = 8.
{Fig. 54.) Ans. §2aV1+ 4a% + log @r +VI+ 4] = 2la
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43. First Fundamental Theorem of Integral Calculus. Con-
sider the curve y = f(x) in the interval (a, ) and suppose the
interval subdivided by the » + 1 points %, = 4, %3, -+ +, x,,
Xipn, * ¢ 4 Xapr = b (Fig. 98.) Erect the corresponding ordi- -
nates v; and write Ax; = x;1 — x; for the width of the sth
interval,

Sy : o &\

N
e
= X @y Jrlin Lat1=b
‘Fm 98

Now form the sum \
L) F) AR Fs) Axe + 0 + fia) A
This sum is usually denoted by the symbol

AN n
@) o D f(x) Axi.

fm]

It seemggeometncally evident that this sum approximates the
arga. tnder the curve between y, and ¥a41 and that in the limit,
~agvthe number of points of division becomes infinite and the

1dth of each interval approaches zero, it will be equal to the
area,

A fundamental theorem of the integral calculus states that

@) lim Zf(x)/_\.xa - [(ftx) dx.

r:—)-m feml
Ay

This process of smation, as it is called, affords a quick and
casy way of setting up definite integrals representing areas,
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lengths of curves, etc. For areas in rectangular coordinates the
reasening runs something like this: To find the area under the
curve ¥ = f(x) we consider a thin rectangular strip roughly »
high and Ax wide. Itsareaisy ax. The sum of all such strips
would be Zyv Ax and the limiting value of the sum of all such
strips, lim Zy Ax, by the fundamental theorem would be equal

to f ydx. We shorten this process of reasoning as fo]lows\\
'The area of one strip would be y éx and the sum of all such, strlps
would be f ydx. For the length of a curve we say, t.hat one
little differential arc element is ds in length and thes ‘tﬁtal length
sought is the sum of all such elements, fds. (’I}nls we know
to be equal to s =fds =fbmdx)

For the area under a curve whose v\u,ation is given in polar
coordinates we reason as follows (see Fige'99). The differential
(mit of increment) area 1s no longek g
a strip but approximately the %e.ctor
of a circle of radius p and c‘éntral

angle do. The area of such a‘sector do
is 1 p? df (see review fgxt?}ula 2 (b
page 2}, The sum.g(\all such sec- 4

tors, f 5 02 do, wonld give the total
area sought. NJ i
We now zapply this method in
finding \Qljfm‘les. Fic. 99
LN\

44\‘ Volumes of Revolution. Let the area under the curve
\{ = f (x), namely f f(x) dx, be revolved about the x-axis thus

generating a volume (Fig. 100). The area of a cross section of
this solid by a plane perpendicular to the x-axis is =32 The
volume of a liftle slice dx thick would be ry2dx. The total
volume of the solid of revolution between two parallel planes
x=g¢ and x = b would therefore be the sum of all such
slices or

(1) V= Trj;byE dx.
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-

il R

FiG. 100 R\ _
Itugtration 1. The area under the curve y 33&\ffom x=0tox=11s
revolved about the x-axis. Find the volgni&éhus generated.
N
1 ¢
Solution. V= wf ydr = r?lx" dx
07 ey
T N
Tl
=78 cu. units,
& | |
3 ,.28) )
If the area j; xdgﬁs’ revolved about the y-axis, the volume.
becomes O
£ 4 * 4
@) AV V—rfra.
x;\w . €
2N\V
Illust;k@oﬁ 2. The arca between the y-axis, the curve y = x%, and the
HD%}‘J' =1, ¥y =2 is revolved about the y-axis. Find the volume
«generated. :
Q. 2 2
«(}S’olution. V=w-j; x2 dy =:wf1ydy
_ Tyt 2 '
Z.h

= £ r cu, units.

lustration 3.  The area common to the two parabolas y = x?and y? = x 15
revolved about the y-axis. Find the velume generated.

Solution. At any height y a slice will be washerlike: a disc with a hole in it.
. 'Thearea of this disc will be a{x2 — ¥,%) where x, refers to the x in y = 2%
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and x, to the x in ¥ = x. Hence the volume of this elementary disc will
be n{x — %2) dy and the velume sought will be

1
V=frf0 (52 — 22) dy
i
=TL@—y‘)dy

[ _J_'5:|l
1’rl:z 5_le

= ’js'n‘ 7 CU, units.

Or we could make use of a l

%
~
o
i

cylindrical element of volume in Fi. 10B0
examples such as that of Illus- R$

tration 3. When an elementary area strip (as‘iri\l"ig 102} is
revolved about the y-axis, the volume elem@nt, generated is a
thin cylindrical shell with area 2 »x(y. —~ #3»  The volume ele-
ment is 2 7x(3: — 1) dx; summing these we get for the volume

®) V= 2rfx(}wm dx.

 The student should not trg\ ‘to memorize these formulae —
there are these and many o{hers similar to them -— but should
master the technique of“\‘ttmg them up.

&N/
Ilustration 4. Solye “tHe problem in ¥

Itystration 3 by dhe use of cylindri-
cal elements, {2,

U,
Solution. V\Q.have already set this O
up in {?%,gibove '
No/ 1
P 2[5 = W

| oy
Ny [2 R l X
o \ ¥ e D | 2T — =
Q ok
= {7 = cu. units. . F16. 102

EXERCISES

Find the volume formed by revolving the area

1. Of a semicircle of radius r about a diameter,
Ans. 4 #r® (volume of a sphere).

2. Of the triangle formed by the lines x =0, y = h ¥ = ?x about the

F-as. Ans. % w2k (volume of a cone).
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3. Under one arch of y = sin xabout the x-axis, Ans. 123
4. Tn the 2nd quadrant under ¥ = e about the x-axis. .

22 _r

Ans. « f_ we dx 5

8, Under one arch of # = sin x about the y-axis.

Ans. 2 rxsinxdx = 2 gk
0 ¢ \\ '

45. Volumes of Known Cross Section. Consider the setiions
of a solid made by parallel planes. For purposes of 111u§traf10n
let these planes be perpendicular to the x-axis. If it js-possible
to write down the area of each section in terms of\\ts distance
from some fixed point on 0X, say the origin Q, then the volume
of the solid can be determined. For, as in Flg 103, the area of

p. Fie. 103

the cross sectiffy at distance x is known to be a function of ¥,
say o(x), andthe volume element then is of{x) dx, Hence the
voluny ffom X =atox = Hwould be

(1)’,;;\ V = ["a) ax.

PN

@) Sohds of revolution are a special case of this.

Mustration 1. A solid has a circular base (radius #) and every section

perpendicular to a diameter ia an equilateral triangle, Tind the volume
of the solid.  (Fig. 104.)

Solution, At a distance x from the center alcmg
the diameter shown the cross section is an
equilateral triangle whose base is, say, 2 w and
whose altitude is then #v'3, The ares of this
triangle is #*v'3. But this can be expressed
in terms of x since #? + x* = 4% The area is Fig. 104
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then \/é(r'—’- — x%), The volume clement becomes \/ﬁ(rﬁ — x8dx. The
solid is symtmetric and so we write

V= 2'&’@(12 — ) dx

3
=23 [73x — 5-:[,.
3 1o
= $v/3 % cu. units. s &\
N\
HMlustration 2, A newel post cap has a square base 6 on a side. Each
section parallel to the base is a square whose side is proportmnal‘ to
{1 — x), where x is the distance (in inches) above the base. | Eind the

volume of the cap. (Fig. 105.) ) \~;
Solution. w = k{4 — x}
w=6whenx =0; L~ k=%
=34 —x

A slice dx thick parallel to the base and x inches 5N\
above it will therefore have a volume clement{
w?dx or i(4 — x)*dx. The volume of\ﬁke

cap is
V=g fo @ - i}ggx‘

N
1o o]
4{*&1} inches.

H]

FiG. 106

1

<\
O EXERCISES

By the method qf c;mss sections find the volume of the salid described.

? 2
E +% - 1. (Fig. 16} Ans. 4 wabe,

2. Theisgedge cut from a cylinder of radius 7 by a plane passing through a
h

1. The elhpsm&l o

dlamqber\of the base and making with the base an angle § = tan™

\ 3
} Ans. £k

\/3 The sohd whose base is the segment of the parabola 32 = x, cut off by
the chord x = 5 and whose section by a plane perpendicular to the axis of the
parabola and at distance x from the vertex is a rectangle whose height equals
5 — x). Awns. $V'125 cu. units.

46. Areas of Surfaces of Revolution. When the curve
¥ = f(x) is revolved about the x-axis, a surface is generated
(Fig. 106). To find the area of this surface we consider the area
generated by an element of arc ds. This area is roughly that
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of a cylinder of radius ¥ and we write dS = 2 ry ds. Summing
all such elements of surface area we get

@ S=21rfyds,
_ 27rﬁyx/1 T dx

.‘//

"m’/;"
b

Appropriate modiﬁcaj;iqﬁéﬁof this formula will be necessary
if the curve is revolved\about some other line or if polar coor- -
dinates are used, et&'\\f(See Chap. XV, § 65, for the method of
finding areas of mc}e general surfaces.)

Ttustration v \Bind the surface area of a sphere of radius 7.

Solution. x;’iﬁfs area could be generated by revolving the upper half of the -
cir&%}c}‘-}- ¥ = #* about the x-axis.
O\

.:;.\ : S=2rx fJWl-I—J"gdx
'”\’:; .
\”\;w’ . =4w£(m© dx
' 4 . .
= 4?r?‘f dx
o
=47rr|:x:|r
o
=4 7t

Iustration 2. TRevelve that arch of the cycloid x = a6 — sind), ¥ =
a(l — cos ) which passes through the origin about the y-axis and com-
pute the surface area gencrated. (Fig. 47.)
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Solution. Here

S=2:rfxds

= Zarfol + ¥idx

Now dx = afl — cos6) do

dy = gsingds o\
Apd f o gin @ \\
: Y T " coss SO\

oo _ SIN%H e X

YT = cosey LAY

. £
w2 __1 \
Tty T 1 —cosd sintie \x{'\/\
1 3O
\/1—|—y2=——--13 \\

.—27”;[( ‘{\4\ c0s 6) d8

= 41ra"*j{; {¢§ — sin 9) sm\,{ﬂ de

RN

=4 ragf (e sm.%ﬁ’\— sin ¢ sin 4 @) 48

m

= 4mﬂf.{3\gm L8 — 26in? 3 0 cos & 8) g
Integrating the first Qﬁa@‘.‘é by parts we get
4;;@3£ sin 0 de

A =4wg[_2m3%9

ar 2
+ Zf cos 1 odp
L] 1]

\{‘\{w )
N/ ) 2w
“};\\ =4Tae]:4.w+4sm%e‘u]
A = 16

N\
\;Thls is the answer since
4araﬂf {— 2sin £ 6 cos & 6) df
R 2o
- 4w==[— $sin? § O:IG
={.

Mlustration 3. Find the surface area generated by revolving the upper half
of the cardiold p = a{l — 038} about the initial line. (Fig. 52.)



\/

122 APPLICATIONS OF INTEGRATION [Ch. X) .

Solution. The radius 6f the circle through which the element ds swings is |
psiné. The surface clement is therefore 2 mp sin 0 ds.

5 =2:'L1rpsinﬂvpz + p'tde

= 2w-a£w(l — CO8 E)sinﬂ\/2 (1 — cos 8} df

=47ra2fw(1—cosﬂ)sinﬁsin%6d3 e
0 : _ \
=8waszsin3%ﬂsinﬁdﬂ K
o AN
L § 3
=16wazf sint 1 8 cos 1 6 d0 A
LU 7%
16 2[2 . -13:'“ ’xt\\ ’
= g2 | Fsind § ¢
kg ] A ~.x\
u.ﬁgﬂ_waz_ -
)
EXERCISES ¢ 0>

1. Find the surface area of a zone ol 'Eftqt'ude } of a sphere of radius +.
{A zone is the portion of a sphere mcluded between two parallel planes; the
altitude of a zone is the distance between the parallel planes.)  Asns. 27k

2. Find the surface area genexated by revolwng one arch of ¥ = cosx .

about the r-axis. 3 Ans, 27]vZ+log (L +~/2) :
3. Find the surface am\ generated by revolving the lemmiscate p
@ cos 2 8 (Fig, 65) about; tl\lmtlal line. Ans. 2732 — }

4, Find the surfan Hrea generated by revolving about the z-axis the
ellipse x = @ cos gy = bsin 4,

'\j 2 hE
Ans Qm"b[\f 1—e 4= sm“l e] where ecccntn-::lty g =2 =¥

i

6. Find ’uhe surface area gcnerated by revolvmg one arch of the cycloid
x= a&:jsm 0), y = a{l — cos E) about the x-axis. {(Fig. 47.)

\
N 7. Work. Leta body move along a straight line under the |

Ans. &t vd®

“\“dpplication of a constant force F Ibs. acting in the direction of

motion. If the particle is displaced x ft., the work done is
W = Fx ft.-lbs. Thus the work done in lifting a body weigh-
ing 100 Ibs. a vertical distance of 2 ft. against the force of gravity
is 200 ft.-1bs.

To generalize this notion of work we consider a variable force
F acting in the direction of motion which takes place along a
curve. The distance (or displacement) element along the curve
is ds; if the force F is a function of s, then the element of work -
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done will be dW = F(s) ds. Summing all such elements we get
the total work done:

(1) W = j; f’F(s) ds

In the applications which will concern us the motion will take
place along a line which may be taken as one of the axes, For
example, if the motion is along the x-axis (1) becomes . \\'\

N
2.
& W 3
\

@) W= f ‘Fx) dx.
Hlustration 1. A vertical cylindrical tank of radius 7 ft. and.héigﬂi: hit.is
full of water. Find the work done in emptying it \\
by pumping the water out over the rim of the \\ v
top. (Fig. 107.) . o

Solution. Consider an element of water (a dlsc.) at 1
depth x from the top. The volume of this? sl\tee is |
mridx,  Its weight is therefors w2 dzs\where the 1 |
weight of 1 cu. ft. of the liquid is 2 (d\ens}ty} here |
w = 62.5 1bs. since the liquid is water,™ In general 4
w will depend upon the liquid considﬁréd The work
done in lifting this weight (l'orae’) % feet is therefore
dW = 82.5xr3x dy and the Lota}.work is

W = f 62.5 rrix dx \ \

i) N
_ 625 g G ©

2

w "!: “‘ . . -
= ﬂ-rﬁk m the case of a liquid of density w. Fie. 107

A

Illustrahgﬁ'\z An anchor chain of a ship weighs 50 lbs,/linear ft. while
theﬁ@chor itzelf weighs 2000 Ibs, What is the work done in pulling up
a{@or if 100 ft. of chain are out, assuming that the lift is vertical?

~Qo~h’.1.'tion. Let x be the number of feet of anchor chain out at any time and
#\\/consider an element dx.  This element weighs 50 dx pounds and it must
/ belifted x fect. The work required is therefore

100 .
W zf 50 % dx -+ (2000)100
0
where (2000)100 represents the work of lifting the anchor itself,
100
W=252 " + 200000

= 250,000 4 200,000
= 450,000 ft.-Ibs,
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Illustration 3. The force required to stretch a certain spring is propor-
tional to the elongation. If a force of one pound stretches the spring
ha¥{ an inch, what is the work done in stretching the spring 2 inches?

Solution. Call L the natural length of the spring and x the elongation.
ThenF =kx,1 = k-3, 2 =2 Hence F = 2z and the work is

2
W =Jﬁ; 2xdx .
= x3]2 A \\
it ¢ WD
=4 in_JbS. . ;“‘3 -
EXERCISES N

1. A hemispherical taunk of radius r is full of gasoline of ’{ifﬁk\sity w. What

1s the work done in pumping the gasoline out over the rith of the tank?
X Ans, lmwrt,
2. The natura! length of a spring iz 4 inch@.ﬁ:}d’ the force required to
compress it is F = 3 x, where x is the amount of. feffipression in inches.  Find
the work done in compressing the spring untjl\?k 1 only 2.8 long. :

W W Ans. 2.16 in-lbs. -

3. A conical tank 1s full of water, is.'GtIt‘. deep {vertex down), and the top
has a radius of 2 ft. Find the work<gquired to empty the tank by pumping
the water to a point 3 ft. ahove the~to;3 of the tank. :
A Ans. 127w 4 24w — 36 7w ft.-lbs.

48. Pressure. Wh\en\gn area is submerged in a liquid, there
is a pressure (force‘per Unit area) on it due to the weight of the
liquid above it. (3t is a fundamental principle of hydrostatics
that the pregsufe P = wh, where w is the weight per unit vol-
ume-of theAigdid and / is the depth of submersion. It is also
fundamental’ that the pressure is uniform in all directions.

Theseprinciples and the calculus enable us to find the total force.

F'dugé.to liquid pressure on a submerged area of variable depth.
~(Bhink of a vertical area as being submerged and consider a
Nborizontal strip of length [ and depth % (Fig. 108). Let this

|2

i
SOOI I gk

Fia. 108
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element be of width dk. Then the area of the strip is / d% and
the pressure on it is wh. The force on this element is pres-
sure X area of dF = whi dh. Therefore the total force F will he
given by

. /]
(1) F = L whi dh.

This integral may be evaluated as soon as / is expressed a@
function of A.
TNiustration 1. A plate in the form of an equilateral trlangle ofxside 2 a, is

submerged vertically in water until one edge is just in the sm‘fﬁce of the
water. Find the total force on one side of such a plate. \(Fi;, 109.)

Solution. If 2! is the length of an element submergctkd /2, depth x then

! ¢ v
V’gav—s_c“v@a a
1—a_ V8
—a—-3x
The total force is then given by
F = ffa'(a—— )dxn.‘
e _ ey
2 9 ags Fig. 109

— % asbs, \\

IMustration 2. The‘be}}ter of a circular floodgate of radius 2’ in 2 reservoir
isata depth of ’6“ Find the total force on the gate.  (Fig. 110.)

Solution. T‘ikmg axes as shown, the equation of the circle is

%}\”F 46y = Y
At a § h 3 the width of an element is
dpand the length is X
BF =i 5T
\> The total force is then ¥
-5 ————
F =2wf VIS O T oy
Set Y46 =z dv =dz dy 2
F= ij;_z(z — Vi — 2dz

e -2
=2w [— Hh— 2% = 32VE 7~ 125int g]

; FiG. 110
= 24 i lbs.
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Tustration 8. A plate in the form of the parabola ¥ = x? is lowered verti-
cally into water to a depth of one foot, vertex downward. Find the total
force on one side.  (Fig. 111.}

Solution. The length of an element submerged (1 — 3) ft. s 2. The
total force is then ¥

1
F=2WJ; (1 —axdy

1 - s &\
=2wf 1 —»v5dy _ A\
] dy o K
3 o B 1 ‘y 4
=2W[%-y2 —-éﬁ:[o AN 7y
= 155' w [hs. F{.(’}\’\l’l}
EXERCISES o

1. A6 % & rectangular flocdgate is placed vert'QaHy in water with the &
side in the surface of the water. Find the force o o€ side.  Ans. 192w lbs.
2. A cylindrical tank of radius 5 is 1)lac$<{1$¢ri20ntally and is half fufl of
gasoline that weighs @ Ibs. /cu. ft.  Find the%n:éséure cxeried on one end of the

tarik. : . o\ ¢ Ans. i\}l w [bs,

3. A hemispherical bowl 27 in radj}is‘is‘ filled with water. Find the total

force exerted on the howl. N v,:{:%’s. F =fwx Zxv4 — x%ds = 8w Ibs.
L\ )

49, Center of Mags,\\For a point mass m,; lying at a dis-

tance ; from a Iinehi(\tﬁe first moment of the mass with respect
to the line is defined as (Fig. 112)

PN\Y; Mg
X: o
S A
9
'\\ . Mg
”\ mi
NN Ta
~O) n
. \s. o 7
\,
L
Fie. 112
{1) lst moment = y

For » such particles, we have the sum

(2) 1st moment = rwmy + rgns + - + 7.0,
= 21y
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FFor a continuous mass distribution this sum becomes an inte-
gral.

{3) 1st moment =fr dm,

where 7 represents the distance of the element of mass dm from
the line L.
The center of mass, measured from L is : ; \\’\

A
ffdm 'AY)
A\

{4) 7 = center of mass = O
dm \ ¢

s
T

wy 3
From (4) we can readily compute the center of mag : '}or a given
mass measured from a given line (or from a given plane in the
case where the mass is three-dimensional). ), 'Sometimes the
center of mass is called the center of gra\ﬁly or the c.g.; for
masses that are pure geometrical figlfes the term ceniroid is
often used. We shall use the abbréviation c.g. since its use
rarely causes any confusion. o’

Case 1. One-Dimensional Ik{qks. Consider a wire in the
shape of the curve y = f(x). ~We modify (4) as follows in order
to compute the coordinate{g\of the c.g. Now mass equals den-
ity times volume but .i\’rﬁthis case the “volume” is the length

7

of the curve. Henc&\™

'ui..fnass = density X length
N4
O dm = pds

N

o ."\.f:’o ;- fpx ds fpy ds

\} fpds, §=fpds

Formulae (5) hold whether density p is a constant or not; in
case p 1s a constant, it may be canceled.

I
and the cgéjﬁinates of the c.g. are
K\

Tllustration 1. A wire of uniform density is in the form of a semicircle,
Find its c.g.

Solution. Consider the wire as the upper half of the circle 27 + 3% =
For reasons of symmetry £ = 0.
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fpyds. . Y_
- {8

y_ =
) fpds

T e y
_ ZJ; V1 4+ yRax
“ | a
_2r Fie. 113 AN
T NG

Iﬂustrahon 2. The density of a certain rod a foot long vgncs“ﬁn cctly as
the square of the distance from one end, Find the c. g\\

Solution. Place the rod on the z-axis, one end at th{e‘ gm 5o that
p = kx? \\V

Case I Tuw Dimensional Mass. Consider a plate as an '
area with a\given contour and the mass as density X area
(Fig. 114)\”

N
)

'“\: »
\/.

_2_3’1 =nlx)

5y

Vo= @y

=) "\

F1a. 114

Ha==UYz (.’.!:]
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Thus

dit = pdd = p(y: — ¥z} dx = p(x1 — x2) dy
and the coordinates of the c.g. are given by

fpy(xx — x2) dy
fp {x1 — x2) dy

_Jortn — iy ax
ot~y ax’

¥y =

(6 z
O
Note that for ¥ the area element is taken as (v, — 3)»&;(;
since all parts of this strip are at the same distance x frbm the
y-axis; similarly for ¥ all parts of the strip (x — xg'dy are at
the same distance y from the x-axis. In most pro ms com-
monly met g is a constant and in this case it.ig’ ﬁ)ssable to use

the area element {y, — ¥.) dx in computing Wh consmiermg all
of the mass of the strip as concentrated, af‘the middle point,

ie,at 21592 When thisis done (3
2 &\\

3 oo 9 dx

5=
Lo — ye) dx

K\
and this may be used inBt‘éad ol the expression for ¥ in (8).
e 2\J
L AN
Mlustration 3. Find the c.g. of a semicircular plate of radius 7 and of
uniform densiky.™ /

A\
Solution. ‘v‘v\rmé x4y =gt
g\é f}"dx )
~\".' f_ ydx
~\)
P _ g
\/ ¥ = ﬂf (72 — xB) dx %y
1
-l -], o
ar Fia. 115

T3

Iustration 4, Find the c.g. of that area cut from the parabola y* = 4 px by
the latus rectum.
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Solution. Because of symmetry Y
F=0.
Fi i
nydx ‘szvpxdx
x=" = Y
J:y dx ‘I:2V_px dx x
1 dic Fip,o) A |
¢4] - Q&
= —=f : A
oy £\ *
] i»\
=tr. Fic, 116

Case III. Three-Dimensional Mass. Hern «‘d’:}}= pdv but
thus far we have discussed only solids of revéi}_ion and solids
with known cross sections. We shall také\up more gencral
cases in Chapter XIII. But fora three@i}ﬁensional mass (vol-
ume) we take moments with respecttd a plane and so define
the 1st moment with respect to tha\f}biane. Suppose the area
between the curve y = f(x), x =\0, y = ¢, ¥ = d, is revolved -
about the y-axis. Then talgﬂiitfg' glices perpendicular to the
y-axis as we did in Qt;}hﬁuting the volume, we have
dm = pr3* dy. This mass is all at the same distance from the
base plane perpendicular to the y-axis. The first moment of
this mass with resgé@t&o the base plane is (Fig, 117)

(7 C \M Ist moment = wfpyx? dy;
N v/ :
7. Y
S
O -
N\
O
AN ’
&\ 4
N

Fig, 117
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and the ¥ of the c.g. is given by
pyxt dy
f x> dy

Since the solid is one of revolution, this will completely Iocate\
the c.g., provided the solid is homogeneous or provided the den\
sity is a function of the distance from the axis of rotat10n< )

Hlustration 5. Find the c.g. of a homogeneous hemisphere of ,rsaﬂiuq 7.

Solution, The c.g. will lie on the diameter pcrpendlcuLarofo\he base at 3
distance ¥ above the base, N \

fryx?' dy
Ve
fdv

.
fury(rﬂ — ¥ dy

* a3 \
- 2i ?’gz _ %3;\:1‘ Fic. 118
=4 O

&

Dtustration 8. Find\the c.g. of a cone of radius r and allitude . (Measure

{rom the vertex.}), #9™
2N/

Solution. 4 \F = 0,

\’éut r_ f, X ;; ¥; and the volume of the cone
is Lrrth.  Therefore

ooy 32
folzs) e
= 0
Y= Fi1g. 119

4 arrth

-nlih

- %k
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EXERCISES

Find the c.g. of the following masses.

i. A wire bent in the form of a right triangle of legs @ and 5. Take thi
vertices at. (0, 0), (4, 0), (0, 9). Ams. ¥ =44,7 = & This peint is at th
center of the Spieker circle, which is the circle inscribed in the trizngle whose
vertices are the midpoints of the sides of the given trangle. (Prove 1{9\: the
center of the Spieker circle is the c.g. of a general triangle considered, a3 & Wire,

2. A right-triangular area with Jegs ¢ and b. Take the verﬁicf'es “at (0, O}

< (@0, ©,8). dns. T =%a,5 =15k Thisis the point of interséetion of the
medians. (Prove that the median point is the c.g. of a'\geiaerai triangular

NS ¢ L

area.) - _ K7 .
8. The first arch of the'cycloid x = a{p — sin NG > a(l — cos ). (Fig
47 Ydns. T =wa, ¥ = 4.

4. The area under the first arch of',th}“' cycloid & = {0 — sind),
y=o{l —cosd), (Fig. 47) “ Ans.¥ =xa,5 =46

SO
B. The area under y = cos x betweersg \ o g and x = g
N Ans. 2=0,7= %‘I

8. A rectangle whether considered as an are or an area. .'
: Ans. c.g. at the geometric center.

7. The volume l‘orme&\by rotating the ares in the first quadrant under
the parabola y2 = 4@Bet\\-‘een the vertex and the latus rectum about the

3

y-axis, . Ans. x =05 =§h

8. A hemisphece of radius r if density ¢ = ky where y is distance from the

base plane, 2\ Ans. ¥ =751
y ’\s. )

50.\:}Mbment of Inertia. Corresponding to (3) § 49 for the.
Lst{moment we define the 2nd moment as S

\»\\‘}1) 2nd moment = § =ffz dm.

_ This quantity plays an important part in the theory of rotats:
g bodies and is called the moment of inertia of the body with
respect to the line (called an axis) or to the plane.
Again there are several cases according to the character of-
the mass considered. But these are treated in precisely thé
same way they were treated in computing the lst moments
(§49), the only difference being that here the square of the dis-
tance is used instead of the first power of the distance.
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Case I. One-Dimensional Mass. Let the curve y = Fix
{(a wire) be given, To find the moment of inertia I of this wire
with respect to the x-axis we write, for (1)

@) I, = f 3 ds
and evaluate in the usual way. 7, is defined similarly.

Dlustration 1. Find the moment of mertla of a circumference of a cm:le
about a diameter. (M)

"\
Solution. We consider p = 1 and write x2 4+ 32 = 2. The mqmeﬁt of
inertia of the whole circumference will be 4 times the mome{& of inertia
of a guarter-circumference. Hence

L
r \/
=4 VI a 4
N
= 4fr7 dx £ \\;
o ¥ \,l

®",
i LN
=4 Vr‘f—x%dic
i

&
=4r [g»\?&"— x4 g sin~1 —J
= 11"1‘3.,.\\

This is the moment of% \t1a of the mathematical circumference.  If this
are is replaced by ; ay iré of density p and mass M = ps, wheres = 24r =
length, then _ 9\

7N \I’ = pnr?,
Butp = ,{}herefore, in terms of M we have

Zar
"'\’\\ Iz = ﬂ'gr_'

WS
‘ ,"

Sas'e II. Two-Dimenstonal Mass. Here the mass element
isdn area and the moments of inertia about the x- and y-axes
are respectively

3) L = [pyrda
(4) 1, = [pxtaa

where an area element is so taken that it all lies at the same
distance from the given axis.

i\
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Diustraticn 2. Find I, and I, for the area common to the two curve:
y=zy =2

Solution, These two parabolas intersect in the points (0, ®, (1, I} an
because of conditions of symmetry 7, = 1.

I = foy*(\’y -y, p =1 _
-[3#-%] ©

| A
= 3%

For a plate of density » = ﬂ;{ (see Illustration 5, § 41) this begoﬁ&es
¥
I:—E_P—'Ea M. o”'a'

e \
Tustration 3. Find the moment of inertia of a er{a: area about (aJ a
diameter, (b} a tangent. )

Solution. Write (x — )¢ + 3 = 2. Since this >1rn:le is tangent to the
y-axis at the origin, the answers are (a) I,,'aﬁd' by L.

Iz —fpyﬁ(x_f) d}’,p - 1 ”\,
\l
—4fy‘W? yﬂdy
—4[ (ZJ'Z—?%)"«’ +*—sm—1y]

(F ormula{&, Table of Integrals)

~\
=T (3\1@}
4
=£§—T =7 (plgte of mass &)
S [y as
2
i:\, = 2j(; rxg\/f? —(x — 72 dx
‘S'e\tx —7 =
M\:\:."“ I, =2 fjr(z S+ VE < Bz
W =2f @24 mvii— e

= 2[§(222—f?)\r’19 — g +§sin—1r:-

— 31— )3 4 ?V’m + gsin—‘ EL
(Formulae 44 and 48, Table of Integrals)
= 357t (area) .
= § M7 (plate),
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Note that the methods used in Illustration 3 have some
involved integrations. It is possible to compute the moment
of inertia about a diameter with comparative ease after intro-
ducing the idea of the moment of inertia of a mass (one- or two-
dimensional) about an axis perpendicular to the plane of the
mass. This is called the polar moment of inertia I, and is de-
fined, as before, as the mass times the square of the distance, 0{{\

) Iy = [ + 39 am. <O
But this can be broken up into the two parts W
6) Iu=fx2dm —|—fy2dm, \\\\

— I+ 1L O

Hence when the axis is taken through thesohigzin and perpen-
dicular to the xy-plane, then the momem‘ea‘ inertia about this
axis i the sum of the regular momentg@bout the x- and y-axes.
Let us return to the problem (a) in’ I.lf.ustration 3 by considering

ale
Ilustration 4. Tind the polar morpciii’bf inertia of a circle about an axis
through the center. R N\ _
Solution, Write x% 4 32 = 12 Qn’d‘consider the area element in the form of
a ring of width R, the afea, of which is 2 =8 4R.  All of this area is at
distance R from the axé}mnce

Lo = J;’Rf PrR 4R

s\ﬂ:R” r Tyt
{= _:lo =5 {area}

N 2
&
’\‘ » ﬂ;i - ﬁ% (plate).
Cleatlt
.»\*:' s=L=%Dh
~\.J o
3 = " (area
N/ gl _ ) Fia. 120

= %ﬁ {plate).

This is the same result obtained in Illustration 3 {a}, but is arrived at here
with extreme ease,

It is also possible to get the moment of inertia about a tan-
gent (Tilustration 3 (b)) with ease. This we do in § 56, Illus-
tration 4, after further theory on moments.
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Case I11. Three-Dimensional Mass. The general case of 2.
solid is discussed later in Chapter XIII. For the present if the .
mass considered is that of a solid of revolution about the - axis, -
we proceed to take disc elements perpendicular to the y-axis.
The mass of such an element will be dm = erxtdy. The mo-
mentof inertia of this mass about the y-axis is the polar moment
of inertia of a circular plate about an axis through its cen\sé}x

M2

By Iltustration 4 above, this is equal to 20 < ordl, =1 m:x‘* dy. .

The total moment of inertia of the solid is the sum of the__-
moments of inertia of all of the elementary deLS,, \01'

7

) =t ray. . \

\

_]]Iustration B. The area of the eIlipse \%“1 is revolved about the_'-
y—ax:s Find I, for the sohd thus gengsat&d (Fig. 9.) '

Solution. Ly =3orfxtdy o ‘
A

at e :’ g
o J:‘ B — ¥ dy

m\% [5‘ -3 b‘*ya + % ya]
A5 PTG%
\— fTret {p=1; for volume).

But the volume wgenerated is $xa®h, Hence M =V, I, = & Ma* (for |
solid of n;iaSs»M) '

Ji

The ;nee;\hod used in Illustration 5 is sometimes called the
meth@\tjf disc elements. Another useful method makes use of
cygm?hchz elements.  (Review page 117.) '

N\® . -
~\Allustration 8. Work the problem in Iitustration 5 by using cylindrical -
/  elements,

Solution. The mass element is p2axy dx and all of this mass is at the -
distance x from the y-axis, Therefore ;

I,=4 '.rpf xiy dx

=4dgp-— fx“va’-‘ x2dx

~dmg G @t e - i
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(This integration was performed by parts with & = x?and dy = 2+ at — 32}

—4m [ L _ iyt - e - ]
= '1'35 ,D‘N'Gib
% wa'h {for volume)

= £ Ma*(for mass). A

Note that the integration by the method of discs was snnpler N
than the integration in the second method where cylmdncal
elements were used. This is not always the case and the~stu-
dent should use the simpler method whichever it turns skt*to be.

Ancther important concept in mechanics is that of\radms of
gyration k defined as follows: * N ,x

®) k=L ,:15\“'

This says that 7 = M#2 and so % can‘be interpreted as the
fixed distance at which all of the mas$, M would have to be con-
centrated in order to yield the mome‘nt of inertia 7. To calcu-
late the radius of gyration ﬁrst»caltuiate I (in terms of M) and
substilute in (8).

4 \
”\EXERCJSES
1. Find I, for the hnc segment joining {0, 0) and (L, O) Ans. % I3,
2. A plate of den&@y ¢ is in the form of the elllpse + . Find I.
and [, for this pIa{e Ans. I, =1 Mb I, = I Mo

TFind 7., I, A0 Ans. I = L MU, I, = } M2, [n = L Mig* + 5,
4, Flnd}h(ﬁ moment of inertiz of a solld sphere of radlus T about a diameter.
Ans. § M2 (cf. Tllustration 5).

Fmd the moment of inertia of a solid cylinder of radius r and he1ght h
a&m (a) the axis, (b) a generator. Ans. (2) ¥ M, (B) § M
6. TFind [, for the solid formed by revolving the area common to the two
parabolas 32 = x, y = x¢ about the v-axis. {Fig. 102.) Ans. 12 M.

3. A pldx@qh the form of a triangle with vertices at (0, 0), (a, 0), (0 ).



CHAPTER XII
APPROXIMATE INTEGRATION

51. Trapezoidal Rule. It is impossible in some cases'tc;\&-
press the indefinite integral, ff (x) dx, in terms of th&éién‘ien-

tary functions. But it often happens, as in englneerlng prob- \'
lems, that only an approximation to the deﬁ?.nte integral -

f f(x) dx is needed. Further it may happen\hat all that is

known of the function y = f(x) is a tableydl values obtained
through experimentation. In either cAge 1t is possible to ob-

tain an approximate value for j; i ()e}dx.

Suppose this definite integral bﬁlﬁtemreted as the area under
y=f{x) fromzx=atox = b \ahd suppose the interval b - ¢

he divided up into equaL p‘arts each of width Ax = b—a by

points of division x\\ Frect ordinates v; at these pomts
and 30111 the extrem‘it'les by straight line segments. ‘Then the

P .
N~
. x'\’"'
{o\{.
N
\’ :
’“\‘ N/
\,’ Ha ¥
Ty=4 @I ¥y xnsz

Fig. 121

sum.of t}_le areas of the trapezoids thus formed will be an ap-
proximation to the area under the curve. 'This sum is

T+ A A+ T+ ) M oy o) Ax :
———(yo+2yl+2y2+ +2yn_1+y»)
138 .
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Hence the Trapezoidal Rule:
®  f@ar =S o0t 2m 4 25+ 250 + 30,

If f(x) is given as a table formula (1) may be applied if and
only if the spacings between abscissa points are equal; if the
spacings are unequal, the areas of the trapezoids can still ba\\
added together giving

s +an + 30+ ) a0+ 30 + J’n) A;ca

where
AX; = X — Ti_L :'\\ 2

This will give the approximation sought. P\

\ v
Hlustration 1. Evaluate f %2 dx by the Trapezqi{@ljRule, using n = 4.
1] {

Solution. We note that this can be inte a‘tcd and so there would be no
need to use a method of appromrnatlcgi\\But as an exercise we take
n = 4 and Ax = .5 and write L

s,'

Lx?dx-—é(()—i—;-f—«z—!-g—f—a;)

_1_1'._ ,’¢‘n

The exact value is § sq. un{& The error is .08.

Iltustration 2. Evaluat\e f Jsinz dx by the Trapezoidal Rule, using »n = 3.

Solution. The fﬁ%ﬁ dx cannot be expressed in terms of the elementary

functions/ \"

\:j‘;smx B (1+ 4+ 3v3

2 N = 1.361.
, :"\. 4
\'“splﬁstraﬁon 3. In order to get an ap-
/  proximation to the area between a
straight railroad track and a winding
0 23 ]
stream, measurements were made as b4 38
in Fig, 122. Find approximately the — g B6 46 60 G640

\/_”T'ﬁ)

area between the railroad and the Fia. 122
stream. )
Solution. A = }H50)70 + £(70 4+ 54)(85)

+ 3(5¢ -+ 83)45 + (83 4- 81)60
+ 3(81 + 38)50 + (38)40
= 19,055 sq. ft,
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52, Simp_soﬁ’s Rule. A definite integral may also be e'uralu-:E
ated approximately by Simpson’s Rule: '

® [ 0 = X 40k 95 - F 200k 90t ok )3l

In applying Simpson’s Rule it is necessary that the number
of intervals # he even. The way to remember this rule i \fo |
note that when the first ordinate is called y, and the lagprordi-
nate ¥,, # even, then the operations are iwj K’

Ist. Add the first and last ordinates, i
~ 2nd. Add 4 times the sum of the ordinates )@Eh“ odd sub-
SGI'IptS \
3rd. Add 2 times the sum of the ordinateg) with even sub--
scripts (excluding, of course, y,), )

4ih. Multiply, the total sum by 1 ofthe common distance
between ordinates. O '

This rule is developed by using, parabohc arcs {instead of
straight lines as in the Trapezold‘al Rule) with which to approxi-
mate the curve. The parabdlas used are those with axes par-
allel to the y-axis each ories of them being passed through &
consecutive set of threeoints on the curve of ¥ = f(x). Since
each set of three pom\ts accounts for two intervals, the total
number of intervalsWwill be a multiple of 2 or an even number.
In general Simpson’s Rule gives a better approximation than

the Trapezcnc{al Rule, where the number of intervals # is about
the same, \ :

Illus@hon 4. Apply Simpson’s Rule to the problem in Illustration I.
somtmn f 2dx = o+ 40 + 30 + Z3s + 4

\\’ | ~-~-[0+4( +3) +2+4]

= % sg. units,

Note that Simpson’s Rule gives the exact answer in this case.
(Simpson’s Rule gives the exact answer in case y = ax® + bx® +
cx +dwithn =2)

) 12 :
I!Iustratlon 8. Evaluate j; e™=" dx by Simpson’s Rule, using # = 6.
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Solution. Ax = 2, ¥ =1, », = 95079
¥ = B5214, ¥; = 69768
¥ = 52720, y, = 36788
¥ = .23693 (From numerical tables of e—)

1.2
ﬁ o dx = 80675,

i
H

I

1. Find the area under the curve y ZZix from x =0, x =»é,\1yy

(a) Trapezoidal Rule, » = 4; (b) Simpson’s Rule, # = 4; (c) In}e@'afi’om
Aps. (a) 69702 (b) 69325; (c) lc:)g,iﬁ = ,69315.

4 gt &
2. Evaluate J; e—:;; dxr by (a) Trapezoidal Rule, Wi;h:x\&x = and

(b} Simpson’s Rule, with a4z = 3. v Ans, '(}}?3893; {by .3896.
1 dx iIN. . .
3. () Show that 4 [ 1 = x5 (b) By applyiog Simpeon's Rule with

# = 10 to this integral show that, approxima E&;;\% = 3.1416.
4. A smooth curve is passed throngh tgxg‘gglafé of the following table:
B L L A A N B
y o v | 1eX 16 | 23 | 24 | o

Find the area under the curve k}‘\}h) Trapezoidal Rule; (b) Simpson’s Rule.
<O Ans. (a) 8.5 sq. units; (b) 9 sq. units.

/o

EXERCISES N\



CHAPTER Xl
MULTIPLE INTEGRATION

53. Repeated Integration. Since the integral of a fqnéﬁon
of x, f f(x} dx, is itself a function of x, say F(x) -+ Cl’iié may be
integrated. We write \ &7

. ,\n.’;.t'
M J5@ ax = Py 4o, (D
JF@ +edar = 66y Raw’r ea
| A
@ JUfso ax]ax = [ f56 ¢z ax

‘ a ff(x) dx?,

.\."x
Or the process of integratigf; may be repeated any number
of times. \\g

@ ] fﬂx){zjdx} ax = [ f [56) ar ax ax

\\\' = f f ff (x) dxe.

The integrals, 2 and (3) are called repeated or iterated inte-

grals; morejeften they are called double and triple integrals
respectivg:k}g.\"'The n-fold iterated integral is written
AC

@ & [ [ 56 .

. \’ N
“\\Hlustration 1. Find f f sin 2 x dx dx.
N/
Solution. f f sin 2 x dx dx

=f(—1lz‘3052x+01)dx
=—}sin2x+c1x+cg_

Note the two constants of integration € and ¢,
integration is to be integrated, we get the eyx term,
142

Since the first constant of
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Ilustration 2, Find f f f (32 + 7o) dus,

Solution. f f f (32 3- e~ d?
sz(%z - %3‘3‘ + .‘:l)dx2

j‘x" 1 —ar

= (ﬁ+§e +ch+c2)dx ~
3 2 A\

=&)—2%8_“+£g—+62x+63‘ :“'\

For iterated definite integrals the procedure is the samg.i:?l‘hé
integration is performed from the inside out; that 140 say,
f * f Ehf(zc) dx* means that f(x) is to be integrated fQ‘s} between

[4 73 e

the limits ¢ and & and then this constant is<to \Be integrated
between the limits ¢ and 4. Y
Iligstration 3. Evaluate fi ﬁ 2(xﬂ — sin xkzi\e:g}w

2 2 s
Solution. f 1 fo (x* — sin x) dx g °
—_ @ ’. o 3

L5+ P
:fg ¢: '<o\os2 — D dx
_Igi
XA 2
=‘ (‘g\\k cos 2)x]_1
B+ 3eos2,

The problemny i:g;ﬁlustration 3 would have had the same answer
even thoug}ls‘\w. had written it in the form

N S fe —singa]aw

sin{e}’énd w are only dummy variables anyway in this process
Of integrating and evaluating between definite limits. If x and
¥ are independent variables, we can generalize the ideas of
and notation used in (2) to the iterated integral of a function
of x and y,

® S axay,
) J; ‘ J; if}v”(x, ¥} dx dy.
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In (5), (6) the integration is first performed with regard to x -
the inside integration symbol geing with the first differential
symbol, in this case dx. (Some authors couple the first integra
tion symbol with the first differential and the student, when
referring to other works on the calculus, should determine which
system the particular writer is using. QOccasionally the nota-

tion f dx ff (%, ¥) dy is used where integration lakes place\ﬁht

with respect to #.) { |

Since, in (6), after the first integration with re&pectzfs x there
is to be a second integration with respect to ¥, « antl*h could be
thought of as functions of . Hence we are led ’bo\the consxder |
ation of such integrals as

o N Y

1 ¥
o F L5t 5 dx dy\
- The triple integral correspondmg\to (7) can be written
(8) f J::?Lm 2 (x, }” z) dx dy da.

I]lusﬁ'aﬁon 4. Evaluate f f {3: “+ ¥ dx dy.
Solution. f f (x s{“) dx dy

'_I\E‘Z +xy¥] dy

(2 +y°‘) dy

O - [ﬂ’“ ST

&/
\ T PE o PER
Illqétmtwn B. Evaluate 4 = L f J; (x +siny — 2N de dy da.
-z
T T 2
qut:on A .—ﬁ Lz[%-i-xsiny — xz¥ Tdydz
. T v J-.zzz .
=j; f_z (7 +yzsiny — yz-‘)dydz
" P
.=f I:-J'FL +z(siny — ycosy) — '}fzd]z dz

_f [3+2z(smz—zcm2)]dz h .
—[18+2(smz—-zoosz)—21220082—1-(2" Z)Smg}]r._

/0
mo

18+61r
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EXERCISES
Evaluate the fol]owing integrals,

Loafrfve
2. ff “ dydy = .
3. f_ ff“ dzdydy = 1, .\{\

b4. Second Fundamental Theorem of Integral CaIc{u}us.
Consider the area A bounded by a closed curve and suppose
that the mterval a, b (Fig. 123) is subdivided by the s + 1
poINts xy = @, %o, + * v, Xy Xiyyy + * + X = b and ’L\hf,\\lterval €,

& --—dzdy =4 g

Y NS
C )
Ym+1=% T :~\\J
T &
SN
. S
;J“ B =iy,
i \ Jaz
N oh T 1
\\\ ] D
I
» \‘ ’l
Y2 A [ 1
ENN -
Yi=e X)) E
N
NG Ty @ Tty Toh=5
& Fic. 123

d is %ubdlv%ied by the m + 1 points y, =¢, 5, 3,
Yz, » \ym+1 = d. Erect ordinates at the x; points and
abscissae\at the y; points thus covering the area A with a net .
of h{r% forming small rectangular areas. Set Ax;, = xyy — %;

\ahd Av; = ¥;1 — ;. Then the area of one of these rectangles is
AAgi; = Ax,— Ay,
and the sum of all of these areas as ¢ and 7 independently take

on values from 1 to » and 1 to m respectively will be an approxi-
mation to the area 4. That is

] A éj % AxAy,

=l =1
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Another fundamental theorem of the inifegral calcuius (See § 43
for the first) states that
(2) A= lm 2 EAx Ay;

A, $1—mn 0
Az{ Ayi—=0 i=1J=

@) —ff:f &

72l ) A\
@) =L ay if“’
where x = o(v) is the equation of the curve CBEjX = ¢3(¥),
the equation of CDE; y = fi(x), the equation, of\\BED and
¥ = fa(x), the equation of BCD. ‘

The corresponding formulae in polar coordmates are (Fig. 124)
\ 7

{ )

{\ 0
\*w’: ’ Fre. 124
A
W\
™ B P
o a=ff i
\ (6) } _ fm J’-;(p}p 48 do,
Sl

where p = ¢,(6) is the equation of the curve DEB: p = @(f), -
the equation of BCD; 6 = f,(p), the equation of £DC; and
6 = fa{p), the equation of EBC,

In (3), where the integration is performed first with respect -
- fo x, a row of elementary rectangles is obtained. The second
* integration sums up all such rows. (Fig. 125.) ‘
In (4), integrating first with respect to ¥, we obtain a column-
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¥ Y
/] B /£ AN
) G i
— | 4= N oy e e - ”
NP BT O
) . 7 il |/ A\
— — 7 Ke
X Qe
ooy
Fic. 125 FIG, 126 ;5 )

of elementary rectangular areas, The second integ\rz{i,ion sums
up all such columns. (Fig, 126.) - ¥

Similarly in polar coordinates (5) sums, fisdt; elements lying
in one radial strip, then, second, all sud{ stcips (Fig. 127); and

0

Fig, 128

(6) sums,’ rst, elements lying in one circular ring, then, second,
all suchfitgs.  (Fig. 128.)
IL.Qfﬁét possible to say offhand what order of integration will
e“the’simpler in a given problem of finding the area of a closed
refgion since so much depends upon the way in which the func-
tions determining the boundary curves behave. In all cases
the figures should be drawn in order that the geometry be made
clear. The algebraic computation should agree with the geom-
etry of the configuration. After the geometry is understood,
the simpler order of integration can be determined. The stu-
dent will find it good practice to solve a few problems both ways;
this will give him more than just a check on his answers.
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o~ SBut if we take dx dv as the element of

Q

Tlustration 8. Find by double integration the total area enclosed b'y i
two curves ¥ = 2x and. y* = 2 x.

‘Solution. The points of intersection are {— & — 1}, (0, 0), and (3, §j
By symmetry the common area (not regarding sign) is twice that lymg
in the first quadrant. It should be clear that it will make no dlfferenoq
which order of integration we choose. Formulae (3) and (4) beoom

respectwely : )
¥

=2 d

neof e

@t
- 2f* f Iy dx
oJ2x
Evaluating the first, we get
1
A=2[ (-3 dy
0
= ¥ sq. unit (total area).

\,/
Evaluating the second, we get *i\
1 N N (V o l)
A= zfu @0)F — 221 da

= {8q. unit, .,‘:tk’ Fic. 129

The enclosed area lying in thesﬁrst quadrant is & sq, tnit.

Tlustration 7, Fmd by do d\ubie integration the area enclosed by y = a* and

Bolution. The goi of intersection are (— 2, 43 and (1, 1). Integraﬁﬂg
first with respecs to y and then with respect to x, we get

SR
A ='J:_:f dv dx Y

\ f—f 2 ~x—2d _ {—2,4)
{\ = % 8¢. units,

area (where the integration is to be per-
formed first with respect to ), we must —
write the area as the sum of two double
integrals. Thps

4 ff"’drdy+ff dxdy FiG. 130

The reason is clear since a row element gtretches first of all (y = Oto ¥y = 1)'
between the two branches of the same curve ¥ = x* and only later =
to ¥ -4) stretches from ¥ = 22 to x 4+~ = 2 = 0. But of course!
answer is the same only the methed is harder,
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Hiustration 8. Find by double integration the area inside the circle p =
@ cos f and outside the cardioid p = (1 — cos ). (SeeExercise?, p. 112.)

Solution. Tt is better to integrate with vespect to p first since p runs directly
from the one curve to the other.

_ ’2: 4 GO R
4= 2]; L(l-mas}p dp a9 o &\
N

13: a o8 B Vs
LT

o a(l—cosd) y v
=£§[a2 cos? A — 421 — cos )% do 5 / \\ ".'
= [*2coss — 1) o A
= g2 1 — 8 5 , \./ ’

¢ [2 sing —o | LBis. 11

] o\
= ag (3v3 — ) sq. units, \\\\;

&\
EXERCISES, *

Set up the problems in the Exercisedy . 112, as double integrals and solve.

55. Volumes by Doublesand Triple Integration. If the ele-
. ment of area dy dx in {H’& y-plane be projected vertically up-

2

Ve \d
\i"s}{.
O
"{ 3
N/ —
Y

Fig, 132

ward to the surface z = F(x, ¥}, an elementary column (rec-
tangular parallelepiped) is formed whose height is z and whose
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volume is F(x, ¥) dy dx. The sum of all such volume elements
(Fig. 132) over the region R bounded by the closed curve Cin
the xy-plane will give the volume bounded above by the sur-
face z = F(x, ¥) and below by the zy-plane and which is con-
tained in the vertical cylinder whose xy-trace is the curve C.
This sum is =
) v=['[""Fe, 5 ay ax. N\

Or we could begin with an elementary ““cube” dz g4 dand
sum all such elements within the region considered ;if}{')rder to

obtain the volume, This would give ) \\
bl oFiT, ¢* &
2) |4 =J; o L dz dy dx (Rectangular in)rdmates).
In the first integration z travels from théyky-plane (z = 0) up
to the surface z = F(x, y). This redfides (2) to (1) and the

procedure thereafter is the same in¥%0th cases.
Z % ‘ij

\ ¥ / . |
Fie. 183, Reclanguler Coordingles:  Fio. 134, Cylindrieal Coordinafes:
dv = dz dy dx. dy = pdzdp de.

It will be necessary to make appropriate modifications in (1)
and (2) when different types of volumes are considered. I the
volume enclosed by the two surfaces z = Fy(x, y), z = Fa(% J)
is desired, then (2) is modified to read (Fig. 133) '

b ofalE) pFaE b
(3') V= N L o 4z dy dx (Rectangular Coordinates).
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The curve C, whose equations, by pieces, are ¥ = f,(x) and
¥ = fu(x), 1s the projection of the curve of intersection of the
two surfaces in this case.

In cylindrical coordinates the volume element is pdzdpdp
and formula (3) becomes (Figs. 27 and 134}

w v-{ ) " dz dp db (Cylindrical Coordinates), O
The equations of the bounding surfaces are z = ®,(p, ), dnd
z2 = $:(p, 0); p = ¢(h), p = @:(8) are the equations of tl;:e{p?o’-
jection of the curve of intersection of the surfaces onté the

~
SN
{ ™R

pb-plane. z A
X ‘..x\ ’

” \X Fic. 185, Spherical Coordinales:
~\\\ dy = #2gin o dr d¢ de.
T"Iie:irolume element in spherical coordinates is (Figs. 28 and
139Y'7% sin o dr do dp and the formula for the voh_:me common
R’the two surfaces - = ¥i(8, ¢) and r = ¥:(8, ¢) is
By V= f ’ f o f ¥t gin o dr 49 dp (Spherical Coordinates).
¥

1) &, e
Here r travels from surface to surface while 8 and ¢ sweep over
the solid angle of the cone with vertex at the origin and passing
through the curve of intersection of the two surfaces: _
Some illustrations will help to show how these limits of inte-
gration are found in a given problem.
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52
ffon ¥

Tlustration 1. Find by triple integration the volume of a gphere of radius.{:;;:

Solution. Rectangular Coordinates. The equation of the sphere is
FEy+E=dh

For reasons of symmetry we work only with the part lying in the first octant ;

_—8ff f #oms ﬂdzdydx

In the first integration z sweeps from surf'lce (z = 0} to surface
Vgt — x% — 32 Inthesecond integration y travels from curve gy @) to
curve v =V g® — a2 This last is gotten by putting z = 01in ths eﬁuétron
of the surface since this gives the curve of intersection of Ll;e‘au}face with
the xy-plane. In the final integration x goes from 0 to/mithe extent of’
the figure in the x-direction. K7, \J :

V== SLGJ; Fr - yEdy dx ’ ~‘3\
= g'j(;a[%\xaz — =4 a — SY\» ¥y ]" ut— 22 dx

a Ve — 2o

] S\
=2 t 2 \\,
ﬂo(a_ x) .“E \\

Prat] ol ¢
= o A
2:11*[{3 X 3]0 K\
= # za® cin. units, “.:'f"
Cylindrical Coordinates. TQe equatlon of the sphere i

Pt =g zZ

f f\f "’p dz dp db

_—~ﬁ:fﬁf p\/a‘———;- dp d8

\\‘J - sf[— 1@ — pe)w] do

&

Fig, 136

= # wa® CuL. 1nits,
Spherical Coordinates. The equation of the sphere is r = a.

_ 2 ;j % ]
V—SJ;j;szsmqodrd&dp
=%aﬂf5f§ Sin ¢ d8 de

—-éaraf sin ¢ de

= # 7g® CU. units.
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Hlustration 2. Find the volume common to the two cylinders 12 +3 =g
2 o2t = @2,

Solution. Again we work with the part of the velume lying in the first
octant.  Since the curve of intersection lies on the cylinders,
ject into x% 4 3 = g% in the xy-plane.

V=8£aj; S VB dy de ¥4 o &\
- 1}

= sf“f"“‘f""x/aﬂ — i dydx.
0 Ju

The integration can be performed in
this order, but it is simpler to inter-
change the order of integration here
and write

it will pro-

Vo 8j-ﬂf\/az._.yz 1—-82 ~Fdrdy
0 Jo

a N ey
= 8f [x\&z? —~y2:| T gy

0

a N
= 8](; {@? — 3% dy ".‘u‘

N
= £ 2% cut. units, AN
N\ Z

\
Olustration 3. Find the volame cut

[rom the elliptic pa.f:{fi_@ oid z =
X% - 4 v by the plang z = 1.

\Y;

j: e’?\%%ﬁ%ﬂ dz dy dx -
KN\ .\/1—x’«‘
. '0 o

Solution.

V=

=4
?\‘?jo\ z (1 —=x2—4 %) dy dx
O

SRAS= .
v — _ _ 3
4L [y{l ) gcy:L dy

1 3
- 4j; 31— ) ax

Fig. 158

1 . 1
= %,[x(l — % + §200 — ¥ + §sin™ x]ﬂ
(Formula 48, Table of Integrals)

= ?—rc i
4w units,
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Nlustration 4. Find the volume bounded A
above by the cone z = &p, below by
the xy-plane and which les in the
cylinder on one loop of p = cos 24,

Solution.
cog 26
V o= ff f pdzdp d!?
\ .
z 28
=zf4f°°s ko dp &8 \ '
. 0 f X
= 23—k f Lcoss 2648
0
Jsmza(msezwrz)f '
9 0
— 2 4
= 2 k cu. units. N
Ilystration 5. Find the volume inside ¢
the cone ¢ = a and thespherer = a.\\:‘;\
Solution. \\
V= 2f f f r—mnmdaw
f f a*sin =p dﬂ' dgo X

41raaf S‘Ltho de
=7:§‘“§} cose |

5

2 %7a%(1 ~ cos @) cu. units, Fic. 140
O EXERCISES

by triple Integration the volumes described. .
/M. Bounded by £ =0,y =0, 2 =0, S+ (Fig13). Ans ha
N\
2. Inside the cylinder p = g cos # and the sphere o + 22 = at. 9
Auns. 4 a“(é - §)
8. The elhpsmd + 2 + L1 (Fig 16). Ans. §walt
4, The 5pher1ca1 wedge made by cutting a sllcé from a sphere of yadius #
by two planes passing through a diameter and making an angle & mthgeﬂch
Ans. Faf
5.. Cut off from the paraboloid z = 12 + 32 by the planez — ¥y = 0.
_ Ans. ":*5 :
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56. Applications. The derivation and application of the fol-
lowing formulae should be wholly within the grasp of the student
of the calculus at this stage in his study. They make use only
of the definitions of center of mass and moment of inertia and
of the ideas of multiple integration. Again the student is
warned not to try to memorize these formulae but rather to
spend the equivalent time on the fundamental principles.ixa'(\
volved in them. The notations used are self-explanatory,_ .

.

A\,
For PLANE ARgas (DENSITY = ¢) D
Centroid, Rectanguiar and Polar Coordinq{g:\s':"x

[ foxaya o
(1) Tt ——— ¥ ’

.ffodydx oW

~A\ ™

' ovdyde SN
@) LI

[Joaraay
B ffo;q*’-‘ix;éﬁ dp d@

® % ,
) ’ .&g{fgp dp dé

& X

" S formina
> }J ffap dp df

"\M/
From\{'a){énd (4}, p and & can be determined: 5 = VF + 37,
a = J;%h_l g..
O 8

\“> u Moment of Inertia, Rectangular and Polar Coordinales
(5) L= foy dy s,
() I, = f f oxt dy dz,
@ I = [ [t +5) dy ax

- I:“l‘Ig-
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® 1, = [ [oprsin 0 dp at,
)] I, =ffcrpaoos?6dpdﬁ,
(10) L=ff oot dp do.
For VOLUMES (DENSITY = o) “\\
_'Cm'zfﬂid, Rectangular and Cylindrical Coordz'na!eg\'\ K4
an gLl Jreea o OV
[ffodzayax O
\\v
oy dz dy dx j\ v
12 -
f f f o dzdy gg\;
: a13) . fffcrz,dz dy dx

fffu dzdydr

| ” | _‘\J\?f (o0 cos 0 dz dp db
i '/6\ fffap dz dp df ,

a5 {\{" . f Il f oot sin 8 dz dp dﬂ,
‘g{\“ fffo‘pdzdpdﬁ
'“\iéé:; s o f f fcrpz dz dp dﬁ'_'
\/ : [ [op dzdpas
Momeni of Inertic with Respect 1o the Coordinale Axes
an L=[{ ot + 2 dzayax,
@ L={[[otx 2 azdyax

(19) L= [ [o0e + ) dzdya.
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For geometric areas and volumes consider ¢ = 1. Where

density s a constant (homogenecus masses) J» @ may be brought
out from under the sign of integr, atlon

Hiustration 1. Find by triple integration the moment of inertia of a solid
sphere of radius ¢ about a diameter.  (See Ex. 4, p, 137.)

Bolution. We use spherical coordinates. Although we did not mclud,e\
such & formula in the above set, it should be clear that

T o’ F 4
wofta M . . R
Ig=8fzfzf ar? Sin® ¢« 12 sin o dr d0 dyp o~
0 Jo Yo {
. A R
& i, i
=8 —,.-J-‘f sin® g it ol p 3
“3hid # ¢ \\
&

=8cr:r%fzsin3pd¢p NO\¥
= & o’ (volume, ¢ = 1} \\J

£ M¢® (mass). \\

Mustration 2. TFind the c. g of the tetr@drrm formed by the coordinate
planes and the plane 2 «j, 2

-3
‘.oz

P

Solution. The volume is (Ex ’l p 154) & abe.

X = ﬁa(l__)f (I_E" xdzdy dx
‘abc f fbo__ cx(l —= = %) dy dx

..\/ 6 [ bex __)
N abcf 2 (l a ax

& E)
O =3 (x—gxﬂ+’-‘;)dx
A aJo a @
w"\ = 1lpg
™ =1
" \i"‘gff symmetry,
A = .1
\/. y=18h
i=41c

The c.g. of a composite body can be found from the formula

ity s oo+ Mo
oy e

where ¥; is the c.g. of the # part (m;) of the total mass
(my + my + » » « + m,) considered.

I =




"
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Mlustration 3. Find the c.g. of the plate shown in Fig, 141.
Solution. For the rectangle; v

For the semicircular top:

. 4%

F=0F=aty, &
(See ustration 3, p. 129.) @ LON
For the square cut out: i"‘: N

T=51b¥=3b 2 7
The cg. (%, ¥ of the composite body ,B:\\ ’

will be at. A\ .

P (2 ad)(0) + 3 w0%(0) — (% B) N\

dab+ §abt — b ) Fia. 141
— p? p $ :“\
Tda+blr —2) NS )
: s O
@G @) + ynb(a + 1 Fet )

= 2ab T &by B

O

24+ b(n-a + ‘3-39}3%31
=T Za+ b(&\é}

. . 0N . . .

For determlmng\‘bhe moment of inertia of a composite body
we make use ofthe following transfer or '

PARALLED, Kx1s THEOREM. The moment of inertia I of @
mass M withdespect to a line L equals the moment of inertia aboul
the Ii g@fallel to L and passing through the ¢.g., plus the mass M
fzmqts\'!*k square of the distance d between the two lines, That is
@ON" Ip =1, + Ma.

\/ Mlustration 4. Find the moment of inertia of a circular area about a tan-
gent.  (See Illystration 3, p. 134.)
Solution. Ip =1,4 Ma:

:“%,4_{_“1,3_?2

= £t {area)
Mt |

=T tMe

= § Mr*(plate of mass M),
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Hlustration 6. Find the moment of inertia of a solid cylinder of radius r
and height % about a generator.

Selution. I, = § Mr. (Sce Ex. 5q, p. 187)
Ip=1Me 4 Mo
=& M,

Illustration 6. Find the moment of inertia of a solid cylinder of radius »
and height % about a diameter of Lhe base. ¢ {\

Bolutien. Take disc elements of mass par?dy. The moment of inertianof
2\

this disc about a diameter iz "/

O
Mpe o emrdy ol
4 R

Now we use the transfer theorem to get the moment aboutt he d1ameter of
the hase of the cylinder. This is, since the disc elcmant,1 2 units above

the hase,
wrt d " )
Lise = R%’ o et dy - :;b“ ——
= § om0t + 459 dy. N0 CL_/
Hence . \
= 4“?’21‘ plr? "t éyé)dy =T T~ 3

4:;53 E_:%

= i—‘:r?g ( 0’;&%19 )

- 1
d d
= Pﬂ’kp‘ 4= (volume) i v

) M(cL + ) (mass). F16. 142

It should emphaslzed that this parallel axis theorem applies
only to Kraﬂel axes one of which passes through the center of
gravily, \

There are two theorems (known as the theorems of Pappus)
Whlth are of great use in the calculus.

PAPPUS THEOREM 1. When a plane area is revolved aboul a
coblanar axis nol culling the area, the volume generaled is equal o
the product of the area and the length of the path described by the
cepter of gravity of the areq. :

Paprus’ THEOREM I1. When a plane curve is revolved about
@ caplanar axis not cutting the curve, the surface area generated is
equal lo the product of the length of the curve and the length of the
bath of the center of gravity of the curre.
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use was made of signs.)

Y

\ N/

P

N

The reason for the condition that the line about which. theé:
revolution takes place shall not cut the area or curve is app
ent since otherwise dual volumes and surface areas would be
generated. (Algebraically the theorems would still be true arid
could be applied even in this exceptional case if appropriate

Ilustration 7. A torus (doughnut) is generated by revelving the direle
(x — @) 4 3¢ =B, (b < a), about the y-axis, Find (a) the vglume and
{b) the surface area of this solid.

i \ ;

Solution. The c.g. of the area and also of the curve is at the center of the’
circle. Hence O ? :
(a) V = b2 xa) O
T = 2ytab* cu. units. \
\/
(b} S =2:b@a) LI
= 4 «%hg sq\unhs

\

Mtustration 8. Use Pappus’ Thcoretns to find (a) the volume and (b} the
lateral area of a right urt:ular wne of height & and radius 7.

Solution. Consider the tmng‘le with vertices at (0, 0), (n 0, @, h) .
The e.g. of this tnam,r’{s, c0n51dered as an area (plate) is (see Exs. 1
and 2, p. 132);

: ."\\.v’ T=4%r¥=%

By _revolving this triangle about the y-axis the cone is generated.

(a) .~'\f V= -‘zﬂz(% )
A : = % w2k cln. units.

\(n Drder to get the surface area of the cone we merely revelve the
Shypotenuse of the triangle ahout the y-axis. The c.g. of this curve is at
N 'x—gf,y—gh Hence ;

s =vaT R (4
=V £ B £(. units.

Another useful theorem is the following.
Liouip PRESSURE THEOREM. When ¢ plate of plane ared A
is submerged verlically, the tolal force on one side is equal 10 ﬂw
product of the area of the plate, the depth of the cenier of gravify. "f
tke plate, and w the weight of the liguwid per unit volume.
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Hluastration 9. The center of a circular floodgate of radius 2/ in a reservoir
is at a depth of &'. Find the total {force on the gate, {See IHlustration 2,

& 125
Solution. : F = 45 (Ghw
= 24 rw lbs.
EXERCISES
1. Find the c.g. of the solid bounded by the hyperboloid .zE =14 pt am{\
the upper half of the cone 22 = 2 4%, Ans. T =0 =537 = 31 +2).

2, Tind the moment of nertia of a rectangular bar of length L, wfdth a,
and thickness &, about an axis parallel to # and passing through the gl

Ans,. \2 ‘(a‘z + L2

3. Find the moment of inertia of a solid circular q{lindég of radius 7 and
height & about an ‘axis perpendicular to the axis of the eylinder and passing
through the c.g.  {See Nlustration 6, p. 159.) p \\; Ans. Jl_g G+ ).

£, Find the c.g. of the area of the eﬂlpge\b‘ﬁxﬂ + a'yt = @2 lying in the

first quadrant. . \ Ans, ¥ = g ¥ = gb
i

LY

5. The trizngular plate, with sides 3, élr 5 is placed in the xy-plane so that
its c.g. is at (2, 3). Find the volume generated when this triangular plate is
rotated about the x-axis. Ans. 36 « cu. units.

6. A semicircular plate \(édlus r feet is submerged vertically until its
c.g. is at a depth of & feet ( %}n d the total pressure on one side.

Ans. §rmwrthlbs,

7. Find the moment of inertia of a solid sphere about a tangent line.
(Bee Ex. 4, p. 1379, Ans. M

8. A cyhndncg_l pencil £ inch in radius and 7 inches averall in length has a
sharp comc;,;l‘ }nmt 1 inch long. Find the c.g. measured from the point.

{See Illust@t,mn 6, p. 131) . 2L = 3.83in.
9. R;}d the moment of inertia of the pencil in Ex. 8 about the ams3
1"<~ ) Ans. 30,480

\ } 10. The total force on one side of a vertically submerged elliptical plate
{g + }i = l) is 120 mw Ibs. At what depth is the c.g.7 Ans. 20 ft.



CHAPTER XIV
PARTIAL DIFFERENTIATION

57. Partial Derivatives. In z = f(, ) let one of the inde,-\"_
‘Pendent variables, say y, be held fixed. When an increment
is given to the other independent variable, the function gf 1tsé1f

will experience a change. We write C o
o . z2=fay), | S
@) 2+ Az = fx + Ax, 9), A
3 DAz = fx A Ax, ¥ — fn ), NN
@ g = fo +Ax’j) ~ fx, 57y N

X “\\“‘

\ N\ '

This is the usual process of dlf{e\entiatlon as applied to a .
function of a single variable; smc& 'y is held constant, z varies
- only with x. The partial derr.mme of z with respect to x is thus -
defined as RN

o 9z o f(x + Ax, ¥) — fx, »)
(_5) _ Cdx, Q{P}io Ax '
Similarly \

©)- \az _ pim Sy o+ A) — fix, 3)

\ ay Ay

Th \S{Ii:led 8 is used so that this will clearly distinguish this
from Jordinary differentiation. The symbols f, and f, are also
eneral f E?E 9z r '
\mﬁ al use for 3% dy respectively.
" In the case of a function of a single independent variable, .

y = f(x), the differential dy was defined to be dy = gdﬁ

Where z = f(x, ¥), the loial differential dz is defined as

_af af

7 = €y

(7) iz 3 dx aydy.
162
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Iz =7z y)and x = x(), y = y(0), then the total derivative
of z with respect (o ¢ is

(8) dz _of dx | of dy
dt dx dz ay di

d_z_ dx dy
dt’ dt’ di

pendent variable; the partial s.ymbols of 6{) are used to empha- »

Straight &’s are used here for since ¢ is the only inde-

size that, first of all, f is a function of two variables. If the
event z = f(x, ) and x and y are functions of two vanables

¥ = z{u, v}, ¥ = y(u, v), then we write 79,
©) 0z _ of dx + o dy X ’\
du  Ox dn ay dut’ O
10 0z _ 9f dx | of dy D
dv axdr Gy dw \ >
For a function # of # variables u = f‘{xl, X3 + + v, X,) there are
\ '& . .
n first partial derivatives, a” BUNS, ', o, The differential
1 a:fz c'):r,,
du is >
an d»@? L gy 4 oL ax,

and relations analogous\to those in (8), (9), and (10) may be
written down.

Geometrlcallg representq the slope of the curve cut from

the qurfacxa f(x, ¥} by the plane ¥ = constant. (Fig, 143.)
Ev lden.tlﬁ*a— represents the slope of the plane curve z = f(x, ¥,
5 9y

x ﬁfcgnst. As in Fig. 144 the total differential dz represents
theAncrement of the z-coordinate of the tangent plane to the
surface z = f(x, ¥) when x and y undergo independent changes
(cf. the single variable case Fig. 86, p. 63). _
Higher partial derivatives are obtained when the first partial

°f il Bzf
derivatives are differentiated. Thus we have 2 350y 557

-@i, ete. The symbol o is read ¢ the second partial deriva-
Oy ax &y
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tive of f, first with respect to x, then with respect to 3.”  So
authors write this af); p although usually this stands for the
second partial derivative of f, first with respect toy, theq
with respect to x But since, for most functions that are
Z _ z B

X
9 //
AL
ANSI i7
AN |
Y 7
- Fre, 143 oV IG. 144

met with in the first couﬁsé'iﬁ the caleulus the order of differ_%

* 62f o a?f we Sh;_{u pay ].ittle

entiation is immaterial, ie., xdy 5y %

%

" attention to the a{ﬁér in which the differentiation takes plaogl

4 N/
\ 3
' 4

The symbols faz, ey, Fuws fomrs €tC., are frequently used.

5z 9z o o _ % ¥

Tllustration ¢ Gi — erginy., Find = £ £ . _
ionYY Givenz = e#siny. Find ax' 3y ax¥ oxay 8y oF e

¢ '\M'
. Az . Z
Sol{ﬁbﬁ i e”smy,;—y = ¢ Cos ¥
‘.".{\ E?E = g% siny
\’ Y a2
4 a2 9’z
=Sy = =
ax oy YT ey ex
a3z o
o = €Sy

Hlustration 2. Giveriz = x2y + ¢w, x = £,y = log ¢, Find %

i dz _ ozdr | 024y
. Solution. @t axdt ' aydt

= Qay + yeV2 L + (& + x6%) %
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IHustration 3. Given z = 2* 4 3%, 1 =~ pcos 8, ¥y = psingd. Find %, g_;
o
» Gz _ozox  d2dy
Solution. 2 = 3z 25 T 8y op
=2=xcos8+ 2ysing
=2pcos?d + 2 psin®d
=2p.
a2 _ozox | 220y ‘&
a8 ox 60+6y o8 \\
i =—2xpsinf?-+2ypcoss “\(k;f:
=-—2p'sindcosf + 2 8in P cosd \J
=0 AN ¢
o
EXERCISES )
i — 2 -2 9z oz, )
1. Given z = x%? 4 tan e find ax v '\\J
PN N S PP RS
Ans, 2x§\;12 +yﬂ,3xy +J:2+y2

2. Given z = x log y 4+ xsin ¥, find a’z,t O
Ans. ’ﬂo'gj‘! 4 sin ) dx + G + x cos y) dy.
&Ny
. o 3% vaM A
- L A,y Ll ns. yz, £ 0.
3. Given u = xyz, find ox 3 x\ay!uazg ¥
N\
- 2 = 2, find 2
¢ &\ i dt
. \ . az az
b. Givenz = x* 2%¢, & = pcosé, ¥ = psing, ﬁnda—p. a0
M Ans. 2 pcos206, — 2 tsin 2,

4. Given u = xyz, x Ans. el

A\

B8. Impﬁ'&}t' Difierentiation. Let z = f(x, ¥) = 0 so that in
reality @ig'given implicitly as a function of x. Then

‘?5; _9 o 4, 0
g{)\ dz = o dx -+ oy dy =0,
Sor
af
dy dx
9 &y _ o
@ 2%
. 3y

Relation (2) affords a simple way of comput:mg #" where
f(x, ) = 0. This is essentially what was done in Chap. IV,
§ 14, although this notation was not used at the time.
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Now consider a functional relation F(x, », 2z} = 0, which de-
fines implicitly z as a function of x and y.
az’ ¥ is held constant so that z is considered a function of « :
dax :

d
only, we may apply (2) in finding z_

Fix, y, 2) = 0, (2} becomes

aF
oax
aF
02

@

Similarly i

_ 9y
oF
gz

e

Iflustration 1. Given a2 -+ y*tanx 4 ¢

@y _
dx

1
\\\:,

1

Solution. fy R

~

I]Iustratton 2, Given x.Ql;\y tanz — xe* =0

aF
ax
aF
0z

2x— e

. ¢. & \ /
R\
Solution. N\ \
(:;MI
’{\sl
\"\
O

\»

&
ax

1

2y
aF
oz

2ytanz

Bz _ _
ay

EXERCISES
fz 0z
Find o @

2. leenxlogy+ylogz+zlogx =0 Fi

1. Gwe.n +b2+__1

Ans.
T ay

_ Bt xzlogy

Since, in computing .

Thus modified for

’\\\'-?
i"\\ ~
O

K¢
.'\’\}

A
W

ind &
Find p

’3$+y°5ec~ i
Zytanx + e

a2 Oz
Find ax’ ay

Yyigec?z — xe*

yisect g — xe®

9z dz

nd
ax' ay _
_xageloat

+azlogx y2+y310gx_-:



CHAPTER XV
APPLICATION OF PARTIAL DIFFERENTIATION

o &\
59. Small Errors. The theory parallels that of the single\\
variable case. (Chap., VI, §25.) For small increments,the
differential dz is approximately equal to the incremefl) Az
That is \“
= — a.% ﬁ ,".\ '
(.1) Az =dz = Py dx + 3 dy. R

Hustration 1. The sides of a rectangular plate 67 X8 are measured to be
6.01" and 8.98' respectively. Approximately \g.rhét«is the error made in
the computed area? & &

A\

Solution. A =zy. \§\;
dA = ydx 4 xdys &
= 6{.01) +&>.02)

=— 12 sq’ft

Hlugtration 2. In determining the acceleration due o gravity the formuli,

N . .
g = % is sometimes usgd\\Fmd Lhe approximate madmum percentage
errar in the comput&{\'ém:e of g if s and { are measured only to within 1.

Solution. Mogg =log2 +logs —2 logt
-,".\'}” dﬁ:d—S_gd;
9. g § ¢
RS — .01 — 2(.01).

O .. .
Therefo%fhe maximum percentage error in: g is (01 - .02) = 3% since the
dg .
”Elgps are to be taken so that Eg ig larpest.

A EXERCISES
1. In order to determine the surface area of a conical filter the sl‘ant height
sand the radius r are measured as s = 3 + .02 in, a_nd =24 0lin. What
is the approximate maximum error made in computing the surface area S fro_m
S = qrs? Ams. 07 sq. in.

. {

2. The period of a pendulum is given by ¢ = T\E‘ (See Ex. 5, p. 66))
is formula

What is the maximum percentage error made in computing ¢ from th
Ans. 2%-

if the percentage ervor in { and I are 3% and 1¢; respectively?
167
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8. The volume of @ rectangular box is given by V' = xyz. What is thies
ertor made in computing the volume where the measurements are x = 10
03, y=61 .01,z=84 .027 © Ans. Error = 3.44 cu, unitsy

¥

4. The acceleration of a particle down an inclined plane is given by
2 = g sin o, where o is the angle of inclination of the plane. Suppose tha
g=2324 0tland « = 30° £ 1°. What is the approximate maximum error
the computed value of ¢? - Awms. A9

. : B\
-80. Tangent Plane, Normal Line to a S8urface. Let the e(}l&‘-_
tion of the plane tangent to the surface F(x, ¥, 4) = {} av
pomt P(xﬂs Yo, zﬂ) be

7%

(1) : 2 — Zy = A(x — xo) +B(y —'}'u)'.§\ ’

This plane will be determined by the two tange}lt linesz — 2z =
A - x), y=mw and z — z = Bly —Jo)y x = xm gotten by‘
cutting the plane (1) with the planeé’y = y, and ¥ = x, re-
spectwely But the slopes, 4 and\B of these two lines at P.

WA‘LM

are a d az evaluated at (xo, ZYo, Zo) Further - %, and
Béyg =-F ,, (Chap X1V, §58~) Therefore the equa!ion of the

3

fangent plane at Pis .
\\

i . (Fx)o _ _ Q )0 R
@) 30% ( ( *o) F.)e (¥ — 2o},

or, more symmetrlcally, _ _
© ()= ()20 -0
: {\ _ (Tangent plane).

The symbol F) means that = aF is first computed and theﬂ

evaluated at P(xu, Yo, 20).

If Fx, y, 2) = 0 is solved for z, z = f(x, y), then we e have
SDecml case of (3) which becomes

@y g —z0 = (a—i)otx —x) + (gg)o(y ~ 30

‘Since (OF) | (3F) (oF S i
(6:{;’)3’ (ay_ 0 (az .Gafe the direction numbers of a
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N

¥ Xy
Fic. 146 Vv

perpendicular to the plane (3), the equations o,{tlze Itne normal to
{3) and hence normal to the surface F(x, y, 2= Oare

(5) .1 Ml LN Bk 1 \\I‘Normallme)
G (5L Galy

For the surface z = f(x, ), the eq‘uatlons of the normal line (5)
reduce as a special case to N -

(6) _ x‘—ﬂéﬁ;y;yn:z:fn_
G G,

Mustration 1. Fu\ltf the equations of the tangent plane and normal kne to
x4 2y2"-o-'{5k’z‘4 41 = ¢ at the point (I, — 1, — 1.

- ANO GF _, oF _, oF __
Solutxot{\\ i z, a5 49, 3z 8z,
The\equatlon of the tangent plane is

'\” (x—1) =2+ Dt a+1) =

he equations of the normal line are

x=1_y+1_ z+1
T =2 4

Diustration 2. Find the eguation of the tangent plane and the normal line
t0 z = xy — x3 4 2 at the point (0, —1, 1).

Solution. ——=y—3x3,a—;=x+2y‘
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The equation of the tangent pl'ane'is

(z— 1) =—=z-2(r+ 1)
The equations of the normal line are
x_y+1_z-=1

1 2 1
s &\
EXERCISES \\

1. Find the equation of the tangent planc and pormal line to xﬁ w'l =10
1
at (2, 3, 1) Ans. 3x+2y—5—362—18—0 -—2= ;»B—ZTG“-
2. Find the cquations of the tangent plane and normal? ﬁ}kto 2=yt 4 y’f

at the point (4, 9, 5). _ RV
Ans. 3% +2y 125430 - Ot L2 o0 228

:\ »I
61. Tangent Line, Normal Plane\to a Skew Curve. A space
curve, not lying in a plane, is called‘a skew curve. The equa-
tions of such a curve C will be ‘m parametrlc form

ey ' x—f(!), ~‘y, g(z) z = h(d).

Let the two points P(x,\v, z) Q(x + Ax, vy + Ay, z -+ Az) lieon
the curve (1). The. d{}ectlon cosines of PQ are proportional to
Az, Ay, and Azg I the limit, as @ > P, the secant line P
becomes the tangent line at P with direction numbers dx, 49,
dx cj’gy dz

2 \db a
the s%em curve at {xy, ¥, %) will be

dz, or -+ Therefore the equations of the line tangent t0

™\ _ _ —
(2}\ xdx Xo _ ydy Jo _ 2 — % {Tangent line).
(E) 0 (5)0

dz
_ (E) 0
The equation of the plane nornial to the curve C at (xo, Yo, %)
will be '
dx

(3) (E)o (x — x0) + (’%)U(y - ) + (%)u(z —z0) =0 |
. (Normal plane).

If the skew curve C is given as the intersection of two surfaces
F(x, 3, 2) = 0 and G(x, 3, 2) = 0, then the tangent line 10 ¢
will lie in the two tangent planes to F = 0 and G = 0. At



$61] TANGENT LINE, NORMAL PLANE 171

Z

Y . :'.\\ ’
Fic. 146 AN
Plxy, v, 2,) the equations of the tangent plarigs fo F = 0, and
G = 0 are respectively AV

7

@ ((23‘_}30 (= o) + (%)0 =30+ (%u\\e}: ) =0, (Tangent

© (39), 60—+ (5, 0- yo)+{‘3—f)u (=2 =0 ) lHoek

&
Together (4) and (5) are the’ equations of the tangent line.
They may be written indsymmetric form by computing the

direction numbers O
(Gl |Gkl

B, |

limin=]1 . .
01 @), 5.,
and writi.Kg’;Y'
® O B =% _ Y= _Z—i

AN H " n
'“\’fﬁe equation of the normal plane would be
(Y Hx — x) +m(y — 30y + 002 —20) =0 {Normal plane).

Nllustration 1. Find the equations of the tangent line gnd norma_l plane to
the space curve x = f, ¥y = 2 £, z = ¥ — ¢ at the pont for whicht = L.

de _ g 4y _ gy %2 g0

Solution. i i 7
The equations of the tangent line are
x—1_y—2 _z
1 = 4 2
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The equation of the nqrmal plane is-
-1 +dy—2+2z2=0

Tllustration 2. Find the equations of the tangent line and normal plane to
the curve of intersection of z = 2 + »* and x? + 3* = 2 at the point

1,1,2).
Solution, F=xrtyr—2z=0
G=xt+yp-2=0
Fo=2x,F,=2y,F.=-1
G =2x6G,=2y,G. =10,
The equations of the tangent line are ) \~

{2
2 - D2 - —@—2) =0 (¥
G- +0-D =0

Herel:m:n=1:—1:0and the line is para;li%%to the xy .plane; hence
the symmetric form would not be used. < -
X

\

EXERCISES‘

1. Find the equations of the tangenﬁ' hne and normal plane to the skew -
crrve x =24+ ¥y =218, z,= T — &2 at the point for which ¢ =2,
=6 y S 4 248 _

| Ans. £ \ 5 = § S5r+2y4+8z+442 D..____
2. Find the equatipnagf, the tangent line and normal plane to the skeﬁ-__'._.__
curvex =2, ¥y = e"‘,>\= Jet4etat (2,1, 4).
(N, x—2 y—1 z-—4 ’ . _n

"\A:is 7 " -1.- 3 ,2x—y+2.z-—11—(}..._.

3. Find thqequatmns of the tangent line and normal plane to the skew
curve 2 =mEoF 92, 22 + 22 =5at (— 1, 1, 2).

.le=yg‘=3;?4u+n+ﬁ@—n+2@~m=

N\ }

\ » . T
\“62. Related Rates. If, in a function of several variables, -
’say z = f(x, ¥), the variables x and y are themselves functions
of another variable, say {, then z is a function of { and may be

differentiated with respect to f (§ 57).

dz _ of dx | 9f dy
l —n T e m—— — e s
M di  oxdl T dv dt

This relation is useful in solving problems in related rates.
(See Chap. V, § 22, for the one independent variable case.)
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fustration. The radius 7 of a cone Is decreasing at the rate of 2 ft. /sec,
and the height % is increasing at the rate of 3 ft./sec. How fast is the
volume changing wheny = 6 ft.and 2 = 10 f£.2

Solution. V =1k
av _1 dr dh
dat 37 (2 Th +ng:)
=142-6-10{—2)4+36-3]
=-— 44 r cit. ft./sec. ”. .\{\
EXERCISES <\

~s

1. How fast is the area of a triangle increasing if the altitude mcreases at the
rate of 3 in./sec. while the base increases at the rate of 4 in. /s

p 4}5 b + 2 &

2. At any time { the dimensions of a rectangular bcng'ﬁx\z x, v, 2. If the

volume remains constant and if y and 2 each increase atbe rate of 2 ft. fsec,,

how must x change?  Awrs. x must decrease at the\%zt/é of 2_x(_2+_z) ft. /sec.
63. Directional Derivative. Wexba\re seen that e and gy"'

give the rate of change of z in the‘dlrectlons of the x- and y-axes.
The rate of change of z in any(direction can be found as follows:
Let P be a point on the surface z = f(x, ) and pass a plane
through P perpendiculai\ fo the xy-plane. This plane cuts out
acurveon z = f(x, ;Q\( ig. 147) the slope of which is the quan-

¢ z
R
O
N
X
A
3% dy
B
Y
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tity sought. The trace AB of this plane in the xy-plane will -
specify the direction. Let the direction cosines of AB be cos « .
and cos 8 = sin «.. Now .

oo RS

where s is measured in the direction AB. But = c:o%,
% = sin «. Therefore the rate of change of z in the icl»\l;feejuon '
ABis A\

2 _ j{ g'fCOSa—[— ¥ in . ‘ \\\ .

This is called the directional dertvative o€ 2 and represents the
slope of the tangent line to the eurface any point P in the
direction determined by «. When b@pomt Pis partmulanzed

the partial derivatives af 6)‘ can pe “evaluated.

L2
,‘

Tlustration. Find the rates e‘f*change of z=x2 — 3 in the direction
& = 30° at the point (2, 1, 5{\

: ¢ 'iz-,.':z % = -
Solution. \\ix 2 x, 2y 2y
:..i,,.‘ §—3—2xc0330°—-2ysm30°
AN
A\ =2v3 -1~
"\’ & :
 { \ :
\\\ EXERCISES

\1}. Find the slope of the tangent line whose projection line in the xy-plane
\mrakes 45° with the z-axis, the surface being z = x? + 2 3 and the point.
\’ 1, —1,3). _ Ans. —v2
9. Show that the angle « which produces a maximum value for 2—'; i5
az
o = tan™! a_j.!

ox
Hence show that

el = VG + ()
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64, Maxima and Minima. A function of two independent
,  variables, z = f(#, ¥), is a maximum at a point (g, b)if f(x, y) <
- fla, b) Tor all values of ¥ and y in the neighborhood of (g, ).
£ Similarly the function is a minimum if f(x, ¥) > f(a, b) for all
e values of x and ¥ in the vicinity of (g, 2.

~ Forz = f(x, 3) to have an extreme (maximum or minimum)

t int {g, &), it 1 thta—f= g=
. atapoint {e, &), it is necessary tha Py Oanda Ozt (a, &) \\\

e

- But the condition is not sufficient.
i In order to examine z = f(x, ) for maxima and mlmmgf the

procedure is as follows: AN
] AR
of of &f &f o AP
Ist. Compute =, £, —= —<_ —. v
TP or 8y a2 3z 9y 9 A

i  2nd. Solve simultaneously ﬁi = 0, % =.0\\/

Let a pair of (criucal) values satlsfymg these equations be
(%0, ¥o).

#f oif ’ﬂf
3rd. Ev A= 2L 20 t (Xo, ¥o).
rd. Evaluate Frker ’“ N ay) at (xa, %)

 4ih. Then z = f(x, 5v) {NH be a

‘\/[ammum 1T\Z > () and —f ( gj{;) < 0,

ax?
Mmmmmxfa > 0 and 7);( af) > 0,

ay*
N«eh’u&r ifa <O

The tégh Tails if A = 0.
ngew discussion of maxima and minima for y = f(x),

[ 16
;’\

Olustration 1, Examine z = £* + xy + 3 — y for maxima and minima.

Solution, %:2::-}-3; g—y"x’i—z?‘l
%z &% i BN
a7 axay @

2x+y=0} —_1 =2
x+2y=lj X o Y K
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This is the only critical point. - At this point 4 > 0 and a—é > 0 and 217
minimum. The minimum value of zis 2 = — 4. n
Iiustration 2. Examine z = ¥* — ¥ for maxima and minima.

3z az

Soluh.on. Pl 2x, oy 2y,
it ¥z a%z ¢
axz 2 5 ay 0. ayr 2o . \\

The critical point is the origin. Buta =—4 < 0. Therefora‘?:hép’oini 3

_ neither a maximum nor a minimum. Such a point is.calléd a saddié
point (see Fig. 20} and corresponds to & point of ini%c{’ion on a curvé

v =fm. >’

+ X Y

EXERCISES X
N

1. Examine z + xy + :% + Jl; = 0 for Qzu{iréa and minima. o
. W)
VY Ans. Maximum, (1, 1, -3

9. Examine 4(x — 1) + 40y — P% (¢ — 2" — 4 = 0.
Apg\Maximum, (1, 1, 4); minimum, (1,1 _0):
3. Find the volume of thé’}érgest rectangular parallelepiped that can Ix

inscribed in a sphere of radius 7. 87
R \@ Ans. 3 V'é

: ¢ \\ _
© 85. Surfa¢e Area. In Chapter X1, § 46, we treated area
of surfaces.gﬁ vévolution. For more general surfaces the follow
ing form@la holds for the area of a curved surface z = f(%, »)

S
_E{\\w § = ff \!(gﬁ)ﬁ + (g—;)i + 1dydx.

O This integral is to be evaluated over the projected area in th

N

xy-plane. If the surface area in question cannot be projectd
onto the xy-plane (as would be the case if the area were that ¢
a cylinder, f(x, ) = 0, which is perpendicular to the xy-plane)
the area should be projected onto another coordinate plane an

formuta (1) modified accordingly. Polar coordinates shodd b

used if the integration in (1) is thus simplified.

Tiustration 1. Find the sorface area cut from the plane x + 23 4727
by the coordinate planes. ;
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SURFACE AREA
Solution.

177
z=1-x-2y |
dz dz
ax ' aj;__z'

snﬂv[)l_-'ﬁx/édydx

G
SR CESP

"\
V5 . A
TS0 units.

\\ 4
Tlustration 2. Tind the %urfacc arca cut [rom the surface 2 z z“fﬁ + ¥ by
the two planes z = 0, 2 = o
Solution. az— a¢ \
4

‘
/ \V
5‘—41“[\1 ﬂ\r‘"c"—i-y-—i—l;ﬁ}dx

The integration will be simplified by usm@@r coordmates

: S = 4f§flvp2 J{{M}:{‘z; do
o Jo N

J" (zi‘ «1) b
i{}}} — 1) sg. units,

EXERCISES
1. Find the,e\hrfaoe area of a sphere of radius 7.

o

A
L 3
oM

' /

.

Ans. 48,
2. Find t’ng{mrfdce arca of a cylinder of radius r and height £ (excluding the
ends). \

o»\

3

Ans. 16 a*

Ans. 2orh.
iR }d {he surface area of the volume common to the two cylinders
x24\7¢,—a2 %t k22 = g2,




CHAPTER XVI
INFINITE SERIES

66. Sequences and Series. An infinite sequence is an'uga\
ending set of ordered elements, called terms, in which there 154 :
first term, a second term, - - -, an # term, - - - ete. Aﬁgquence
is written .

o.“

o

(1) . Wi, Wo, <vry Uny = £ &

4

A sequence is defined when the law of formatlon of the general
term is known. An infinite series is an Q;presmon of the [orm _

- (2) Uy A sy o +\ua\{—
‘where the #’s are the terms of, an mﬁmte sequence. For ex-’
1111 .
ample, 5, 55 5 5p * AE the hirst four terms of a sequence
whose n*t term is ev1degtly supposed to be i To form an_
\ L
infinite series from{hese we wnte% 4+ 2 1 -1- - - Zl" 3

Again, if the general term of a series is log (n + 1), then the
series is log’ 2 Tog3 + log4 + »+« + log (n + 1) + .-, where,
in order t&get the first term, we put n = 1; toget +he second
term wE'SEL 1 = 2; etc. |

%ost work involving infinite series it is desirable to have
thé’ﬂ”‘ term expressed as a function of #. "

g

\/ 67. Convergence and Divergence. An infinite series mﬂY-;
or may not have meaning. It is obvious that the surt:
14243+ e + 24 - is infinite. ' |

DEeFINITION.  The sum of an infinite series is defined to be the.
Iimiting value of the sum of the first n terms as the number Of ’5‘3””5
increases indefinitely. That is :

) § = Him (u + wn + o + 1)
' 178
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When .5, 1s used to represent the sum of the first terms,

" S, = + # + - 4+ u,, (1) becornes
0 S = lim S..
H—>
The series is written
S=wm+ st 4t e, A

DeFRINITION.  The serics is said to converge, or to be comergent\
twhen Zm S, exisis and is finite. RAY,

DEFINITION’ The series ¢s said lo diverge, or {o be dwefgent
when lim S, Fails o exist or 1s infinite. ) \\ :

B— 4

68. Geometric Series. A geometric profzession is a se-
quence in which the #* term is obtamed bw multiplying the
(n — 1)* term by a constant ratio 7. Thu begmmng with a
first term ¢, a finite geometric progress}oﬂ of n terms would read

O
(1) a, ar, ar, - m"“‘l

Thesum g + ar + -+ + ar of such a progress1on is given by .
N3 1 - ™

@ :S“\; 1—7+
In the event (1) is a%qn}mte progression, or sequence, S, will

represent the sum\of $fie first # terms and the sum of the infinite

geometric series. S 2 g4 ar 4 - Fart4 owill be
N \.

@) o S=limS,,=limal_

H=—r& H—ro 1 -

n

. N.ovy@f? | <1, >0as n->o. Therefore

«a
NS

.(.‘%)"\f," ' S =

1—7
\dr an infinite geometric series of ratio 7, with || <1, and

hence the series converges.
Since | 7 |» -0 as n -0 if | 7| > 1, the series will diverge

' In this case. It evidently diverges for 7 = 1.
*  We summarize: The geometric series

. ©) S=agtar+a*+ - +a 4.
i, converges when | 7| < 1 and diverges when | 7| = 1
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Tiustration 1. Test for COnVergence theseries L+ 34+ 34+ 3 + -

_ Solution. The implication is that the general term is of the form é—l"
{This is actoally the (n + 1)* term). With » = §, the serfes converges

and converges to the value § = 1 i 7 =2, The sum of the series i
said to be 2. z

Tlystration 2. Tcst for convergeme the series for which the »* term@\

given by {— 1)’a e
) ( »,
Solution. The scrics is a geometric series with r = — § and Lho&ze.?ore cone
verges. The series is 7%

\

and = 1’ -1
P4 A
A geries can converge in only on\ way 11m S. must exist

(and be finite). DBut series can dlvcrgc 1r1 two ways:
(a) im S, = o, and (b) hm Sﬂ‘ just simply [ails Lo exist,

fi=—o

Illustrahon 8. The series 1 4 I“+ 1+ - diverges since

IQ&\S im 5 = =,

B G

This is type (a) d:\fef&encc

A

Tlustration 4. Teét [or convergence the series 1 — 1 31 =1 4 -0

A/

Solution. s@y infercnce the #* term is 4: 1, according as # s odd or even
Smcg—Sé = 1, lor n odd, and 8, = 0, for # even, S, — no limit as % — %,
T%\sehes is divergent and is said io oscillate, This is type (b} diver- .

>
s.'

69 Tests for Convergence. We list in the form of theorems |
\’and without proof the following tests for convergence and diver-
gence. Illustrations will make their applications clear.

For ANY INFINITE SERIES

THEOREM 1. I order thal a series converge it is necessary e
the general term approach zero as n approaches infinity. That 15
lim #, = 0 is a necessary condition for convergence,

fi—roo

L3
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This follows immediately from the definition of convergence:
unless lim #, = 0, then im 8, cannot exist and be finite. The

H—eca A=

‘condition is not sufficient; the series may diverge even though

limu, = 0. (See Illustration 1 below.)
fi—>wm
For SeRiES OF POSITIVE CONSTANT TERMS X4
N
THEOREM II.  If the ferms of @ postiive series uy + u, —|— 3+
Y. 1 o are not gregier than the corresponding lerms m‘a Enown
convergent series, then the series converges. 79,
THEOREI\I L. If the terms of a positive serigs }51 +uw + -
+ u. 4 -« gre wot less than the corresponding te:rms ma Imown
dwergem series, then the series diverges. NY;
These two theorems are self—explanatol‘y

Comparison Tests

Mustration 1. Test the series 1 + -+ 3 + + + - for convergence.

..,

Solution. Compare the given serifss
S=1+3+G+OFG+HF+i+ + -
with the series ..&i
=I4+2+G@+N+GEHEFELD A

It is evident that, from the first term, the terms in the gwen series S
are not less than, thoke in the test series 7. That is to say, #; in the given
series is greMefithan or equal to the corresponding s term in the T
series, Bu\thc T series evidently diverges since

~.~—1+2+1r+§+---
Therﬂ,f@'& the given series, known as the harmonic series, is divergent.

~ 1
, sI]lustranon 2, Test the p-series, 1 + = 21‘ + 5 3,, + o 55 + ooy for con
" vergence.

Solution. This series is divergent when p = 1 §h1ce it then reduces to the ‘
harmonic serfes. For p > 1 write the serfes in the form

1,1 1 ,1,1 i)
S=1+(§+§)+(E+§;+6p+7p+
and compare with

T=1+(p +;)+(£p+ﬁ+§+4—)+---. )
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Each term in T is equal to or greater thun the corresponding term in S.'-‘
But T converges since ’

T

I

1+2,,+41,+

=1+29 l+(2—p"'f)’§+

:

v&hu_h is a geometric series with ratio; 3 pl 1 which is less than 1. Tbereforg

& converges. For p < 1 the series § is termwise greater. than the }}a:
monic series {except for the first term). The S series therefore ,glluerges
“The p-series, therefore, is convergent for > 1, divergent for{jb‘}_ 1. o

Ratio Test AN
THEOREM IV. Form the rafio of the (n ,1')}*}191’:»?; o the nt
te’rm namely, ug;‘*‘ and take the limit as n >0, Let lim % = 1.
" £/ o — 0o I . \. _

Then the series of positive ferms i, —}-\ug\—F T T
(a) Converges zf\r <1,
(b) Diverges, if > 1,
fc) T es&fm.fs ifr =1

Mlustration 3. Test ‘the ser{es o
L 2.8 1-2-8n

3+3 {\., 7Tt T eern T
forconvergence
. 1:2-3--nrn+1)
o2 35T @at)EaED _
Sotution. A 1-2-3-n “2n+3
& 357 @nt D)

O

,'\\wl Hoyt _ +1 _1
AN nl_rf‘mzwrs 2

RN

\chce the scries converges.

o \ :
\" Ilustration 4. Test the series —1— + 4o o + 1 A e for con-'__'
vergence.
Solution, 1
lim ¥l oy 2813 '
fi—>m Hn fi—»'m 1

2n+1

2un+1

Ry

i
=
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The test [ails; this method does not tell us whether the series converges or-

diverges.
THEOREM V. If, for a given series, lim %1 = 1 and i then
N L T
Haqr Unir _ HWE J-anbt . .
15 reducible to the form =——""_ T the series
U Y Yo BE bl
converges tf b — a > 1 and dﬂ'ﬂerge.v ¥b—a=<l, A
AN\
Nlustration 5. Test the series = —|— + + e P + 7t - in }I:li:s«
tration 4 for convergence, ‘“ : N
Solutien. We saw that A\
lim 24t o gy 22EL_ >’
n—l-w Hp ﬂ—>w2?€+3 ..\\'
and the ratio test fafled. v
) 1 \./
Here Hagr _ [ ull's and b —g = st

L
Therefore, by Theorem V, the series divg?i’g&:
Cauchy's 1. n!g‘é’fﬁi Test

Tueorem VI,  Let the genemf Ierm of @ series of positive terms
Mt A - Bew, = f(n) Iff(x) is a non- mcreasmg Junction
of the commuo.,as m:rwbl or ¥ = a, then the series converges if

f J(x) dx exists ands rﬁperges if this mzegml faais to exist.

Dlustration 6. Téat the p-series 1 +3 —I— i ok + ~ -+ -+ for conver-
gence. ¢
Soluttion. s‘;\ #, = flm) = '1“
& [

N
L Y W’ = nl-lflm 1 a7 dx
/ 1 ’ 1 .

= ”1_121:0 p—=1 (1_ ”p‘l)
I £ > 1, this limit exists and equals p :1_ Therefore the series converges.
pr = 11-

If p < 1, this limit does not exist and the serles diverges.

f ldt‘ lim logn =
ft—0

H—u)

and the series again diverges.
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For SERIES WITH CONSTANT. POSITIVE AND NEGATIVE TERMS

THEOREM VII. A series coniaining positive and negative lerms
will converge if the corresponding series of the absolute values of the
terms converges. That is fo say s + w2 + 0 -+ % + o+ cOB-
verges if 11 | + | e ] + »+o | 2a | + +++ converges.

1f the number of minus terms is finite, the theorem is ohvigus
since the dropping of a finite number of terms in any series, Wl]l _
not affect the convergence. N\

Tlpgtration 7. Test the series \.
0T S N U B T I N P 7
22 2 2 F 22 2 &R 3

" {or convergence.

Solution. The series of absolute values 1 - é i}b + = 2" < .. i3 a conver-
gent series {geometric series with raumf = ’g) Therefore the original
series converges. {

DEFINITION. A series 15 smd fo converge absolutely if the cor-
responding series of absolufe wlaes converges.

DEFINITION. A series~i§ ‘said fo converge conditionally of #
converges bul the correﬁ@ndz’ng series of absolule values diverges.

DErFINITION.  Anl@lternaling series is one in which the signs
of the ierms alierrate,

THEOREM VIIL. An allernating series converges if (a) 11m #,=0

and if (b) &rb?}z some point on, | u: | > | tir ] > | Hyyn | >

Dlygtr mm 8. Test the series
N S S T T S
RN V2 V3 VR Va+1

for convergence.

-

Bolution. This is an alternating series in which

{a} lim ?un].= lim i

B ) bt
a.nd(b) lu1|>|?/h+l[

for all § = 1. Therefore the series converges Moreover the series

\/— + —= ‘/— + ot —= \/- + - .
is a p-series with p = %. This serles diverpes and therefore the original
series converges conditionally,
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Tustration 9. Test the seres 3 — (5 + (P -« + (= DU +
for convergence,

Solution. Since the series of absolute values § 4 ($)2 + - + () +
is a geometric series with ratio r = %, it converges, Therefore the erigi-
nal series converges absclutely.

EXERCISES s &\
. N
Test the following series for convergence, A
N SR U SR SR iveppept
1'1+§+4+6+" +2n+_ ] Ans, Dwegge‘p.t
21 -34+3F %+ . Ans. Conditionally Do\rwergent
5,5, 5 .5
3 2+ & - =i E I PTESITR Ans\Convm'gent
401-2 42022 4 3(2E + - + n(§y - e Am‘ Convergent.
1 g[ 3 \/ .
B. + 4 103 P 10“ + o, R Ans. Divergent,
O
W ;
6 = + % _|_ 32 _]_ _|_ _|_ ., \\\ Ans. Divergent.
7. The series for which u, = %' »,':-‘:"‘ Ans, Convergent.

: Ans. Di t,
8. log 2 +ion3 log 3 e e 1ogn -F- s IVergen

Y 2.3 4 ., \_ PR Ans. Divergent.
%3 3+4_5+{'\'\h.~ D I g
\ L1
0. 1-= +— — O (- DMt
P \~' . Ans. Absolutely convergent.

70. Pow;’;r Serles A series of the form
(1) '\,\\“' as + x4 a4 e F @
| m"oli’mg positive integral powers of a vaxiable. x angi constant
eoefficients 4; i called a power series in #. Itisan unme:hate _
E’@ﬂel‘ahmtlon of thé polynomial @ + &% + c 4 aaxn A
Series of the form
0wtk - baE -t el -t
Is called a power series in ¥ — &. )
If in the power series (1) a particular value is assigned to %,
the series is reduced to a series of constants which may or mIaY
- bot converge. It is apparent that (1) converges for the value

"% = Obut (1) might converge for no other vaiue of z. Oragain
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a power series might converge for all values of x. If {1} con-

verges for x = b, then it will converge for all values of x such’

that | x| < & If (1) diverges for-x = &, then it will diverge.

when (x| > & L
Let us apply the ratio test to the power series (1).

Un 1 a1,

an;_lx“-ﬂ F.
n

3) fim

fi— o

=Im [x]|

qnX r—»w

r | B—w@ n

e
I{ this limit is equal to a number L which is itself less than umt%
L < 1, the series converges. This says that (1) will converge 1f

2o |

lim | x| - Hence, the
] i an—}—l ] A

THEOREM. The power series @y -+ aux -+ %a L
an

<lorif|x] «<lim

arh—'k
a, A—

S\ .
converges when |x| <lim I and' Xdiverges when’

n—rx | dap1

| ] > lim i @ _|. The series may or m%i?*not converge when
n—a [ Bop1 LV '
f a \\\:
| x| =lim { =

\

#er | gy :
The totality of points x at Whlc:h the series comergeq makes
up the interval of convergente, “the end points of the mterval

!
being + lim | %=
A= | @ayt

L\ )
A\

N
Hiustration 1. Find, l§®~1’nterval of convergence of the series

AN xoml .
—I— > - — (o R . .
v 3 + 5 k(-1 2n — + !
{ i 2 B — I [
Solutia - I m | %] = !

lil“‘x:\ ﬂihvcn [/ ) o 2?& "[" 1 b _

Thert}{QFe the series comrerges for | x| <1 and the interval of convergence.

1 <x <1, At x =—1 the serics s an alternating serics and I8

R COnvergent At x = 1 the serics is again a convergent alicrnating seﬂes
”\ Therefore the series converges when — 1 < x < 1,

NV Hlustration 2. Find the interval of convergence for the series
TH21x 4314 o + (n + l)fx“

&n

Solution. . lim

H—suw

I

Gayr | ﬂ——-h-ue + )

_n—y-oclﬂ—l—l

Therefore the series converges only for x =0,




¥ Al SWME PROUPERTIES OF SERIES . 187

Hlustration 3. Find the interval of convergepce' bf the seties

2x | 2% 2l i
R T R AR

LA

o

Solution. lim
b —

2 (w2
(m4 1)1 - 2w1 I

2 .

Bnsl

i

lim
B 0O

= 00, ~

Therefore the series converges for all values of x and the mterval of n;on-\\

vergence is infinite, : ¢\
EXERCISES \
Find the interval of convergence for each of the following serd -
L1432+ @22+ @24 4+ B+ e Ag&é'\.i— << h
321, 880 Tal L e @ —Dad
s T TR TR A ot i npr Tt

INVARs, — < x < w,

2 5 g A :
3 1 X xR RRTIE RRVE Ans, — 1<z <1,
+x+\/2+f/§+ +’\‘}2+ {’\"
R S R R TE SRy Ans, ~15x <1
— ix — s.’,"~ — Nn
5. (x._zj —-(—‘46"2—2)2—{—‘("%'%;':'“'-}'(“'1)"_‘%—}—‘I""'-

Ans, 1 <x < 3.

'\

71. Some Prop el;t'eé:}f Series. It is often desirable to make
use of one oy more ofithe following general properties of infinite
< Beries. - '
s, Property T\ Regrouping of the terms of a convergent series
, by the inseftion of parentheses will neither affect thg conver-
- gence nof the value of the series. Regrouping by inserting
- parentfidses may, however, change a conditionally convergent
Se‘l%éf Into just a plain convergent series. In general paren-
Alleses may not be removed unless the series converges apso-
S Nittely, ' ' :

. Property 17, Rearrangement of the terms of an absolutel
Cﬁ’n"efgent series in any manner whatsoever will leave unaltered
¢ the sum of the series. : : . :

. _Property 177 In an absolutely convergent series, the series
© O plus signs converges and also the series of minus Signs cof-
Verges. If the series of plus signs convergesto P, and if the series
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of minus signs converges to — M, then the whole series con-
verges to P — M.

Property I'V. Ina cond1t10nally convergent series, the series
of plus signs diverges and also the series of minus signs diverges.

Property V. The terms of a conditionally convergent series
may be rearranged so as to make the value of the series any

" desired quantity.

Property VI. The sum of a convergent alternating Seri‘@
will not differ numerically from the sum of the first » terms by
more than the (# + 1) term. That is, the error madet “h using
the sum of the first few terms as an approximation g the sum
of the whole series will not exceed the magmtude\:'f the first
term omitted. \

Property VII, If the corresponding tepiievof two conver-
gentseries,U—ul—{—ug—r-- + u, + -\\and V=gt

¢+ o, + -+, are added or subtracted “the sum of the new
series thus formed wﬂl be U & K_s (ul + o) + (s £ ow) +

(un + ﬁn) + R
Pmperty VIII, The 1nterya1o0£ convergence of the power
series G -+ X 4+ o 4 anx";:h-‘-- is — R1to + R, where R is

given by R = lim {-%= e ‘.The end points — R and 4+ R may

n—m

Ty
or may not be include } The series converges absolutely for
all values of | x | <

Property IX\. Let fix) = a + @x + v+ @uxn 4 0 and
¢(x) = by +BF 4 v + s + . Then

(a) Sume }(-’C) T g(x) ={aotho)+ (@ £ b)yx -+ (gntbayan +

for eve}y value of x for which each series converges. That is,
tb\e sum or difference of two power series converges within the
*gmaller interval of convergence.

\ .
(b) Product. f(x) : g(x) =acbn+(Gabri-albu)x+(aob2+a1b1—l—azbn)xﬁ+"'

for every value of x for which each series converges absolutely.
That is, the product of two power series converges within the
smaller inferval of absolute convergence. Note that since 4.
power series always converges absolutely except, perhaps, at
an end point, the condition of absolute convergence is not much
more restrictive; the end points of the smaller series of con-
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vergence are the only points that may affect the validity of the
preduct theorem. '

Quotient. 109 _ &+ ﬂx+__ﬂnx_+_ Do 0

© glx) by + b + - 4 b +
=@t @x 4 e g - -
for every value of x for which g, 4 ax + - g,27 + < con-

verges and for which at the same time | bix | + | bax® | + -'-\\\
< |. The interval of convergence of the quotient serigs\is

seen to be complicaled. N
Property X, Within the interval of convergence @ .power

series may be differentiated termwise in order to, 6btain the

derivative of the function which the series repr@ge{ita. That is

di = @y b 2 daX + -0 Haxn) +

ax p ;\\.l
and this is valid within the interval ofeonvergence and may or
may not be valid at the end points.(}"

Property XI1. Between any tweilimits within the interval of
CoNvergence a PoOwer series ma‘y,‘dé'integrated termwise in orc?er
to obtain the definite integ:gl;ﬁf the function which the series
represents. Thatis .

fabf(x) dx =fi@§;+£ba1x dr 4 -7 -i—fanx“ dx 4 -

and this is valid%r all @ and & such that — R < a < b < R.
Il may or maghiiet be possible to extend the limits of integration
to include":z@\'e“énd points.

\ W
o/
2



CHAPTER XVH
EXPANSION OF FUNCTIONS

T72. Maclaurin’s Series. When a known function f{x) L{

written in the form of an infinite series,. the function is saidxgo

be expanded in an infinite series and the infinite series is ;aid to -

represent the function in the interval of convergence. O

Mustration, Since 14+ x4 x2+ - x4 -+ is a geon&trtg: series, it
)

. 1 &
will converge to g for %] < 1.- Hence ' }\‘
4o AREx < 1
o

and the function ix is expanded 1 3\11 $finite scries. The series

1

representation of the function is vali rhﬁy when — 1 = x < 1 but the -

funciion exists and is continuous everyw ‘here except at x = 1.

A given function f(x) may beexpanded in a power series as .

follows: Write N\

@ f&x) = a0 + alx. {t\}zxz + agx® 4 -0 + apxt + -

where the coefficie] ’bs @; are to be determined. Then by Prop-
erty X, § 71, it 15 perml\-,snble to write

(Z) f’(x) ::M + 2 asx + 3 x4 -+ naxm + EEER
(3) 1 xg§;262+2-3a3x2+--- + win — Daxm? + -,
@ B = nla+ (0 4 Do +

W\ . . .
i Fram these equations the coefficients @, can be determined.
~Ja)(1) put x = 0; then

\(%) a0 = J(0).
In (2), (3, -+, (4) put x = 0 and compute the ¢’s to be
®) o =F0), a-= %1
D g =0
190
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We thus obtain the expansion of a known functlon fx) in
Maclaurin’s Series which is

O 0 =50+ LR 1 L0 I

6 The expansion is said to he about the ongm_ or in the neighbor-
- hood of the origin. \

| Hustration 1. Expand ¢ in 2 Madaurin Series and determine the mtervgl \\
of convergence. ¢\

Solution. Here, for all #, flil(x) = ¢v, Therefore the expansmn 15 4 '\
e“—1+x+2,+3,+ + + ,\\
Since kim [g l = 0, the expansion is valld for all yN }\\
A= w2 | Hno] |

Hlustration 2. Expand sinx in a Maclaunn Seri\‘ss,and determine the
interval of convergence. .

Solution. Jx) = sinx, fi(x) = cos?&&v

- f{x) = —sinx, f’”(x) £ 208y, -

Thesin G = 0 and cos 0 = 1; thereﬁo:@the expangion is

) 94:5 x7

g sty =z~ 3'?+5f nt
It converges for all values oQ\smce .
{ '\&l G | _
A \ ninm Byl B
2O EXERCISES
Verify the '\’I'Naurm expansions of the following Important functions.
A xﬂ
1. cos<\§‘1_—+$ o (_1)»—1@?2—__25_!4.._..., _oo<x<ac‘>,. _
s IETTN i —F<r<E o
\—?DO not try to get the general term as it Is quite difficult to obtam) .
.3 log (1 + 1) =x—§+-—- +(__ 1),‘—1.-— - --1<x_$.$.
142 Pt ), -1 <x."'< 1
"“"’g(r_—;)=2(x+ + b .
sl .., <1
B, tan_'lx:x_§+§-_'"+'-(_1}_“-12ﬂ -_}-. . 152

| (n—1) w1 m-n+2)
8. (l+x)”‘=1+mi!£+m ﬂ;! 1 x2+m+m(m (J,;__l}l x“+ ..

i
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This is the hinomial series and reduces to 2 polynemial when #2 is zero or g -
positive integer. When m is not a positive integer, the series converges for |
— 1 < x< 1. The series will also converge at the lefl end point x = — 1§
w > 0; it will converge at the right end point x = 1ifm > —1L.

73. Taylor’s Series. A function f(x) mayv be expanded about
a point ¢ instead of aboul the origin. That is, f(x) canbe rep-
resented by a series of the form - '\\'\'_

) J&Y =@t afx — a) + @l — a4+ -+ g.(x — ag”—l-

The coefficients a, are computed by repeated d1f[ertntiaf10ns ol
this relation and subsequent evaluations at the Qbmt X=a
Thus we have : \\

2) &) =at+2alx—a+3 aa{x AN (x — a)n 14
@) ) =2at2-3alz—a)+- +n(n \l}a,,(x a)2

4 M) = nla, + 0+ Dl ——a]\:i—

From these we compute QY

,..

) a:i@, i=0, 1»2

and the series expansion o,[ f Cx) in the neighborhood of the point *
@ becomes

© flx) = f(a +m (x— a)+f (a) (x—a)y+.. +..r fim (CI) P

‘This is kI‘lO'WI'l as Taylor’s Series. When ¢ = 0, it reduces,
as a speuai\ease to Maclaurin’s Series. If we set x = ¢ + £,
anoth fbﬁn of Taylor’s Series is obtained, namely,

O f?a+fa) =Sy + 118 5+ L@ g 20

\, n (6) let 7.(x) denote the remainder of the series after #
terms or, in symbols

® @ =@+ 24 +{; Z - o)
= 5.0 4+ r, x)

It can be shown that 7,(x) = P ]("1) (x — @) where

e < 2 < x. When (8) is written in the form
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@  fw =f@) +7@E - + - +{; ”1(;3 (& ~ gyt

+f_°?;(!x,tl G—ar a<m<y

it s known as Taylor’s formula with the remainder. For (7)
Tavlor's formula with the remainder takes on the form

- ] U Ll C) PSS LT R D PR

(10) flo-th) = fo) +£@h - +Emgyphe + ESEE S
0<Kéb

TrroREM. The Taviors Series expansion of a fungi;on S

. will be & valid representation of the function for tkag{a&lﬁzes of x
and ondy jor those values of x for which Iam rﬂ(x) 30

I{ Taylor’s Series in a given mstanoe turns out to be an alter-
nating series, the remainder r,{x) will not\exceed numerically
the first term in the remainder. In g\n@rél

rax) =L (x‘)(x ay,

where x,; is some point that l;es bel,ween a and x; but it is im-
possible Lo calculate 7,(x w1th no detailed information about
this point. However, } {'\ 1 18 arbitrarily chosen so as to make

Ffiu(x'y as large as pc{sslble then

N

{113 N eI S Iﬂ ;x 1) x — ayt

J\

The errorm}de, therefore, in breaking off at the n* term will

notexcgsd
\ .

\/ Dlustration 1. Expand sin » in a Taylor’s Series about the point %

m
Solution. f(x) — sin x, f'(x) = cos x, etc. ‘These, evatuated at 5 become
By 1 oofr\ _ V3
g =57 -2

dngol, Y3/ _x (-5 ﬁ(x*g
x*ﬁ?(x—a)*é- 2T T2

Therefore

¥
) o, =00 Ly L0,
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Dlustration 2. Expand ¢ in powers of:(x — a).

Solution.
Since fixy =

Fiz) = e,

and
Fil{a} = s,

the expansion becomes

ex—ea[1+(x—a)+ )+ +("““)+~-

EXERCISES - ' A

‘»

Verify the Taylor expansions of the following important § ?ﬁnctmm
1. sinx =sine+ (x —a) cosa — (x —a)? sine & LL}CO%&—]—

21 5

'\./ —wo < x LW,

2. cosx—cosa“(x—a)sma——zg{tbbsa—t- )3&.1na—i—-~,
—00<x<00..-:

{(=1) g

= ¢ R W S — n—1 .

3. logx = loga+ (x—a)— Za‘«i{x a)—]— —|—(ﬂ l)cz’?l(x a4,
N e>0, 0<x=2a

L2

74, Application of Qénes to Computatlon X

I. Incrementse ¢ We have seen before (Chap. VI, § 25} that,
approxnnately, }\— F(x} Ax. A clearer picture of this is got-
ten by rewrltmg (7) § 73, setting ¢ = x, I = Ax. This gives

O S8 = i + D Ly S e g

Nom\ranspose f(x) and write Ay = f(x + Ax) — f(x). For- |
‘rmﬂa 1 then reads '

Qe by = f@ax + TP 4 @ e
From this, as a first approximation for small increments, we get
3 dy = Ay = f'(x) Ax. .
As a second approximation

@) dy = Ay = f'(x) Ax + fﬂz(f) Az’
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Still better approximation can be obtained by taking more
terms in the expansion (2).

Il Computation by Series. Long before this point in his
mathematical development the student may have wondered
how the tables of the trigonometric, logarithmic, and exponen-
tial functions were obtained. The answer is they were largely
made from computations by series.

Thustration L.  Compute, approximately, the value of ¢ by series.

Solution. The Maclaurin expansion for e# is {

N

oS
ar 7%3

xZ x3

I3 ——‘1+I+é'!—|——§+--.-—]-—m+‘“_ xt\\

1f x = 1, this becomes AN

Lo to1. 1

Fldgitaitat ot Ry

=1+14 054 0.166667 + 0.{;418&

+ 0.008333 +- 0.001389 £'¢.000198 + ---.
O\

Hence approximately, ¢ = 2.718254, which Jstorrect to 4 decimals.

A
m

Tlustration 2. Compute sin 10° :{S}.ﬂ;;ﬁ correct to 5 decimals.

3 725’1 P

. . x x
Solution. sinx =2 — & "{ﬁ mkT -+

NSV A0 W E AL} (r) _
sin10° = g 3!(18) + 51018
Now this is an alte.r:r{ating series and the error committed in using oply a few
terms will ndt Giceed the numerical value of the first term omitted (cf.

Property N§ 71).
C$H 10° = 0174532 — 0.000836 + 0.000001 — -~

The th"u\l term does not affect the 5th decimal place. Therefore, taking
Siﬂ\’ the {irst two terms in the expansion, we compute, correct to & places,

a\ 4 sin 10° = 0.17364.

£

N

\'(The sum of the first two terms is 0.173646 and a better approximation to

sin 10° is 0.17365, the valuc listed in a five-place table of sines.)

Diustration 3. Find cos 44° correct to 5 decimals.

Solution. Maclaurin’s Series for cosine is

2 it .
msx=1-—:%+4~1-“",
i
but for g = 44° = iz 4;,

A
4
N

o
)
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this series will not converge very rapidly, We should use Taylor's Seties

instead and expand about the point ’i Thus

ons - P~} =+ b= ]

from which it follows that

s <\

o 2 wo_AfxN A a N, \

cos 44 l:l + 155 (180) 3i (180) + :| A
which converges rapidly. . O “

cos 44° = 0.707106 [1 + 0.017453 — 3(0.017453)2 — £(0. 0174:33}5 i
g = 0.707106 + 0.012341 — 0.000107 — (.C000006 —|~,-\\\
= {.71934,

But the error committed by using only 3 terms dogs ﬁaﬁ excend the 4th term

since the largest value of f7'(x) in the mtar\Qi 8 __2__ {See [ormula 11,
§73.)

)

N/

G ‘\
EXERCISES
1. Expand ¢ in a Maclawin Serles‘and compute ¢~2 correct to 5 decimals,
o Amns. 0.13533.
2 By using a Maclaurin eﬁpaﬁmon show that log 2 = 0,6031 correct to
4 places. p \

3. Show that for anglé”s\}e-as than about 1° 467, sin # = ¢ with accuracy to
b decimals. \

4. Usc the Madlgurin Series expansion of tantx and the refation

tan 1 4 2 tansLi to C(I)mpute 7 = 3.1416 which is correct to 3 places.

5. Expand'sin x in a Taylor Series and compute sin 61° = 0.8746 correct {0

" 4 places./\ '
S‘C‘Ep'md log x in & Taylor Series and use 4 terms to compute log 1.2
Estlm te the error.

¢ \Ans log 1.2 = 0.182667 with an error not in excess of .0004; the correct

\\ »  valueoflog 1.2, to 4 decimals islog 1.2 = 0,1823 so that our answer, based
/ on 4 terms, is correct to 3 places.

T
4



CHAPTER XVIll
HYPERBOLIC FUNCTIONS

75. Relation between Exponential and Trigonometric Func\{\
tions. The {following expansions were obtained in Chap-
ter XVIL.

L g oy P \J
(1) £ "1+x+ﬁ+§+“'+a+”‘;

; 1N
nx=x -2 4% PO

(2) Sing =% — 5+ +(=1) 1{21’&‘:.)!-'- '

xEnLE

: =1 -E L e R
@ s =1 gy gy Vet

~
R
{ ™R

It can be shown that these series c\{)zi\'v;érge for all values of x,
real or complex. Indeed when x £)w - £3, these series will
serve as definitions of ¢=+¥, sin.(eh % ig), cos (o + i) respec-
tively. For x = 46, a pure irdginary number, (1) becomes
Y
&' |
since § = v'— 1, 3'2::-'\L.~‘1, #=—1 #=1etc. Multiplying (2)
by ¢ and writing % for yields
i
5!

& 60 =144 — —I—%-P---,

G ising 2P o
S Y
AN
For x —\91&’%) becomes

"\ 2
6 Neosd =1 —%-{-?—:—
AN ar o4t
\'BY“éidding (5) and (6) we get (4). Thatis
@ e = cosf 4 F5ind.
This is a remarkable relation and is generally known as
Euler's Identity. It exhibits a very simple cormectzo_n .between
“8in 9, cos ¢, and ¢*, Evidently ¢<-® = cos (— ) + ¢sin (— 8)
or

(8) &% = cosf — {sind
197
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Solving (7) and (8) simultaneously for sin ¢ and cos 8, we get -

R
{9 sinf = —57

X =)
(10) cosg = L

These relations are very important in advanced mathemati€sy".
and (9) and (10) could be used as definitions of sin @ and ,ces

76. Hyperbolic Functions. In many branches of aophed
mathematics there are functions very similar to thé\frphi -hand -
members of (9) and (10) of § 75 that are of defmge.\lmportance
& — and £ @+ ef

g and _;_
real. Although these are just simple co;h}ﬁmatlons ol the ex-

These are , where the exponems are now

ponential functions ¢ and ¢, they ane sed so extensively that -

fables have been prepared for them and names given to them. -
For, reasons that will shortly be. made clear, they are called the --
“hyperbolic sine of the varlab{e‘a” and the “hyperbolic cosine :
of the variable #” respectlvely These are written “sinh 87 -
and “cosh ¢.” That 13,\by definition,

) einh g = £
__ O & 4
(2) :‘:\: cosh § = T‘

In ordeij}() make clear the reference to a hyperbola in these
definjtidns we first reconsider the trigonometric definition of
sind, \Fig. 148). Let P(x, 3) be a point on the circle :
xz\J.- ¥ = g% Now the arca of 'the sector OAP is equal to- |
\ } @¢; the area of triangle OAB is } g2, Thus the angle ¢ can -
be thought of as the ratio of the area of the sector to the area of -
the triangle. That is,

Moreover it turns out that

@ - sing — 2042 _ ¥
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which is in agreement with the usual deﬁnltlon of sin ¢ wh
is the angle AQP, where ¢

Y
B
\\\
oo
i "
o <
Fic. 148

. " _
In an analogous manner, if tﬁé\}rectangular hyperbola
** — 3% = o is used (Fig. 149), i1;- uths out that if

(5) g = Sector 011_\13’ “. ::& v

ACAB 3N
thy p
e ~ :’\\
6) sinho — 38‘43 oL

where, now, P ~i~s:'a‘ point on the hyperbola, For °
*\"‘xy-—fv — @t dx
i’)é“_ -
N to
Xy — ZJ.:V T — @?dx
= Xy —[ Vx2 —-at — alog (x +V:c’ - a”]‘

which, after reducmg,

= azlogjt +2

Therefore
(D R 2 o3

a
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and similarly

- _ 8 _
&) e x+

From (7) and (8) it follows that
#—ef 1 (m - _a___)
2 2 a x+y ~
R\
=2 — sinha \
a \‘M \
Note that 8 is nof the angle AOP in this case as 1t isin the
case of the circular function sin 4. CN

Other hyperbolic functions are defined as fO]l({Y&iS\.\

sinh§ _ e — g N\
tanhd = coshf & 1+ @ O
1 D 1

ot 1S Setho =

A trigonometry of hyperbolic, 'f&nctlons can be developed
comparable to that of the c1rcu1ar' unction.

cothé = sech 8 =

1
tanh &

Hiustration 1, Show that cosh2ﬁ“ sinhre = 1, v
Solution.  cosh?g = @%1&\8)—2
A\s%}-}— 24e”
O 4
siffvy = &L= 2+ o ite®
Ry subtraéii\oﬁothe result follows, X

IIIus{at o 2 Sketch the graph of

— e-‘I
) 2
Using the exponential definition of ginh

we develop the following table of
values,

"\ . &
~\Salution. ¥y =sinhx =

Fia. 150

|

sinh x J

1_’2 3

0
0 1.2 i aa 10,0 e]

Since sinh {— x) = — sinh x, the graph (Fig. 150) is symmetrlc with respect
to the origin.
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Whereas the direct hyperbolic functions are given in terms
of exponentials, the inverse hyperbolic functions involve loga-
rithms.  For example, let

¥ =sinh1x,
Then
X = sinh A
’ N
- Y — v :u \ ¢
2 » .“\:' s.":
which, on multiplying both sides by ¢, becomes a quaclga’t'ic in
¢, namely, O
& — 2 xev — 1 =0, ) \‘

w4

Solving this we get O
=z Ve +L, Y

. . . ~\ . .
where the minus sign must be dlscarde@\smce ev is always posi-
tive. Finally, therefore, we have KOs :

Nl
3

1)) y =sinh1x = lgg{(}'_-i-vx* + 1),
which helds for all values gf’:};‘
&

.\\f; EXERCISES
Prove the followmg identities.
L sech?¢ = 1. {Enhe.
2. cschzg =:§ch‘ﬂa — 1.
8. sinh(-13) = sinh x cosh y + cosh x sinh'y.
4. Skefch the graph of y = cosh z.
5:"\812,%:‘cch the graph of ¥ = tanh x.
'“3;' “Show that sinh 4x = ¢ sin x.
7. Show that cosh ix = cos x.
8. Show that cosh—x — log (x + ‘\/xT:I), xz L

9. Show that tanh x = {;logi fj, —l<x<l .

7. Differentiation and Integration df_ I_'Iyperbdic Functli;)otll?é
By making use of the exponential definitions of the'hype;’iﬁ d
functions the following rules of differentiation are easily verified.
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I (e’“_-z o)

_ et erdu

2 dx

= gosh u %'
2) di cosh 1. = sinh # f;z \i\
&])] ' a‘f_ tanh # = sech?z ji; i,,\,f:'»“‘ h
4 dix coth % — — csch? u gz _ \\
(5) _ di sech # = — sech # tanh « gi; ,\ -
(6) ' dﬁ csch e = — csch u coth,u{"%ﬁ'

o N\

Further, rom the relations given a\bove (§ 76, Iormula (9) and
Exercises & and 9) for the i mve‘:se hyperbohc functions, it fol-
lows that & ’:’ 3

d o _321 du
¢h] PP sirth~ M\Wd all u,
+1 du
8) mcosQVIm RV > 1
) ‘éitanh-luwlul_m% —l<u<l

To ﬁinq.\the integrals of the elementary hyperbolic functions’
we m@pmake use of the exponential forms of the functions and
of cOurse of the usual methods of integration.

AN

”>cr0) | f sinh u du — 1 f (e — o) du
=3 e+’
= cosh & 4 ¢.

(11) fcosh #du = sinh u + ¢
(12) Jranh u du = log cosh u + .

3 - fcoth #du = logsinh # + ¢.
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Tlinstration 1. Find f sech # di.

Solution. Write
1

sech u =
cosh

_ cosh &
cosh® ¢

cosh # 24

Whence . A\ ¢
. _ n' osh z du %
fSeCh i = Tx S‘—‘-‘-inhza ~§\~

_ {_disinhy) N
1+ sinh® \\J
= tan™ {sinh u),ﬁ\-?“
J
S
Ilustration 2. Find f xeoshxdr, o«

. Ky
Solution. Integrating by parts, we zet

N

fxcoshxd.{%xsinhx— sinth £ dx
P \C/‘ = rsinhx — coshx + ¢

Many of the ;nﬁégrals that we have already met can be ex-
Dressed in terms“of hyperbolic functions. For example, by a

slight generaligition of formulae (7), (8), and (9) above it fol- \

lows that ()"
(14) w;\§ N S
A {Q; fm—smh- a—f—e, all «
\> - = log (u +Vut + &) +c
_(15) f-—&:kiazzcosh—ig-i-c, .u_Za._..
=log (v +Vur — @) +e.
(18} ‘m—f‘f_a_‘-zﬁmt—lxt_anh—lg—lv.c, -g<u<a

Ll etu e
T34, s«_!_-Jr

I -+ sinhsz' i"\\ v
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EXERCISES

1. Write the equation of the catenary y = = (e“ +e ) in terms of a

hyperbolic function. Ans. y=a cosh & v

da a1 du
2. Show that ax coth 1y = = uﬂdx’ W > 1, <\
3. Show that fcsch udy = log tanh ¥ 5t e (\

\ 4
| O
4. Show that fv wta@tdu = g YV + gt —smh‘1 ,—[\.k

; \Q\
N\
N
\
&
/\‘\‘«
&
O
&:}
Ke
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SAMPLE EXAMINATIONS

¥ 4 3
| V3
W A

DIFFERENTIAL CALCULUS QY

EXAMINATION I N\
. . dy . 3 5'
L. Find < in each case: \)
dx > 'x';\\.l
(@) x = gtonv: \\\\ )
) \
(b) y = JE T u

1 -3y “& )
(©) ¥ = scc G2 =B;
(dy x =# -{—sinB}“ y=1-cose;
&) y= 2r<-\“h,rc sin (1 — 2 ).

2. Acisternisin t‘rﬁstghdpe of an inverted cone (vertex down),
with its diameter equalto its height, each being 10 ft_. ‘How fast
s the water pourifg’in when it is 3 ft. deep and rising at the
fate of 4 in. pefwiinute? (Leave answer in terms of .)

3. I in%h{s‘maxjmum and minimum vafues of

O g ldatw
"\~ ?;::' Y= 1—x + & .

YA particle is projected. vertically upward with an initial
i%lh’wity of 640 ft./sec. The height y after / sec. is given by
) = 6407 — 16 £, )

(@) How high will the particle rise? &

(b} What will be its velocity when it s.tnkes t!li ground

(€} How long will the particle remain in the air:

5. Find the angle at which the curve whose equation is

*~31% — 2y 4 4 = 0 cuts the y-agis.
205



206 APPENDIX A g
6. The height % of a tower is deduced from an ohservation oi &
the angular elevation 6 at a fixed distance b from the foo.’
Find: _
(a} The error due to a small error in the observed value of
(b} Find the relative error; :

-(c) If & = 100 ft., ¢ = 30°, and the error in the angle @
1’(= 0.0003 rad), find the error in calculated height.

b
;

7. Sketch the curve p =

- and find i .5
T cog 20 find its slope a}g 3

8. Find, at the point (1, 1), the value of the if¥sture of
k3t = 2. \\ =

9. Compute:
(a) lim e_; # a positive int@f.;

Tt X £
. N
() im ogx N
z—s0 JOg sin x \ ™ _
10. A particle moves along‘»fh’é“parabola »=4x Ata
articular point (x, 1), the velotity component in the ¥ direc-

ionis 1. Find the veIocii'{; ‘Component in the x direction and’
he tangential velocity, £\ : N

EXAMINATION II
- dn T
1, Find =2
é%
) =) (b) y=log (1) (©) y=sin e
D y=E¥2x @ y=(-a@H) () rptog ) =1

& Find the minimum value of y = 22 1 %
3. (2) Find the slope of the curve x=alf —sin §),
= a{l — cos #) at 9 = 60°.

(b) For p = a(1 — cos ) find the slope at 5 — z-

4. The diameter of a circle is found by measurement to be.
2 inches, with a maximum error of 0.05 in. Find the per--’;
ntage error made in computing the areg. o 5

B T R g . L. T E L
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5. A rectangular storage space, to contain 7,200 5q. ft.,is

to be fenced off adjacent to a factory. If no fence is needed

~along the factory, what must be the dimensions requiring the
least amount of fencing?

6. Evaluate log x»

T =t 00 xz ’
(b tim {x ~ E) tan .

=T N
2 L {

¢\
3

N/

7. Find the radius of curvature of y = sin x at x ...?

8. A point P moves in accord with the equatlcm\.t acost,
y = bsinl
(a) TFind the least positive value of ¢ for «thch the speed of
P is a maximum.
{b) At that instant find the magmtﬁ‘de and direction of the
acceleration vector.

9. Find the Cartesian equatmn bf the evolute of the parab-

olax? =2y, .,‘

10. Find the equation&bf ‘the Yne normal to the curve
y=x+0x—2x {X\S}at the point of inflection.
™

_{NTEGRAL CALCULUS

P N\Y;

"EXAMINATION I

1. Z
O @ |xtanzrdx;
N o) 2x + 1
"\' . (x — Dix + )
\/ {c} f 3 xet~ dx.

2, Find the area under one arch of the curve x= af,
-3 =a(l ~ cos 0). _ \
- 8 A trough 10 ft. Jong and whose cross sectlon isa tn{ain:ée
. 4 ft, deep and 6 ft. across at the top is- fu]l of water. Fm &
] tOtaI force on one end.

A=4cosgand p = 8 cos b

4. Find the value of % for the area bouncled by the circles
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5. Find the moment of inertia about the x-axis of the solid
formed by revolving about the y-axis that portion of the
curve 2y — 4 + 2 = 0 lying in the first quadrant,

8. Expand cos x in a Taylor Series in powers of (x — i) -

7. Using Simpson’s Rule and four strips, find the approxi-
mate area bounded by ¥ = oitr=L1Ly=0and x ——:\5,\ '
8. (a) Find the equation of the plane tangent to x;%?-}ﬂ I
22 =14at (1, 2, 3). - O
(b) Find the directional derivative of z = xy?ab (I, 2, 4y in -
the direction o = tan— 2, O ?

9. (a) Find the sum of the series 1 —él?\-{—% —
correct to the first three decimal places,\ ) .
£ 2
(b) Find the interval of conver{ery:é'of the series x — % +
xt /

5~ % + -+.. Test the end pointt's}\'

10. Use cylindrical coorc{iné{féé and triple integration to find
the volume which lies inside*® - 42 = z and outside x4y =
4(z ~ 1). -

1

TS

A\ -
 CYEXAMINATION v
1. AN
O (a) J-Bx\fl — 2a%dx;
\¢ _

A, (h) f SIN® (2 x — 5) dx:
i»\:z. \ﬁ' A
AN © j; 8 xr ~ 14 gy f

.2\
N 2 Find the area, regardless of sign, enclosed between
“\W=sn x and ¥ = cos x between consecutive points of inter-
Vsection .

3. ‘Find the area of the surface of revolution generated by
revolving about the y-axis the arc of ¥ = x2from (0, 0) to (2, 4). -

4 A vertical cylindrical cistern of radius 8 ft. and depth
10 ft. is full of an oil weighing w [bs. /cn, ft.  Calculate the work -
necessary 1o pump the water to a height of 15 ft. above the top - ;
of the cistern, : )
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5. Tind the length of that part of the curve 9 ¢ = 4 28 join-
ing (0, 0) and (3, 2v3). | .

6. Find the value of 3 for the area of the segment of the
ellipse 5* + 4 3 = 4 in the first quadrant cut off by the line
L x2y—-2=0 )

7. The resistance R (ohms) of a circuit was found by using

the formula R = —?, where E = voltage (volts) and § = curnent\\

(amperes). If there is an error of 0.1 amp. in reading z'{"% 10)
and 0.1 voit in reading E{= 100}, what is the appro imate
maximum error in the computed value of R? O\ °

8. The volume of a cylinder is mcreasing’:a\f the rate of
2 cu. ft./min. How is the radius changingy'when r = 4 {t.
and k = 20 ft. if the height is increasing atFh&rate of 6 ft. /min.?

9. Expand tan x in the neighbos}xz@d of x = E, finding four

terms. R\Y
10. (a) Set up the triple inéégral for the volume of the ellip-
'd:"?f_i_:f_s_z_gzl- "

SOx a:& b2 : c? L\

N\ : .
(b} A volume is geQ&kted by revolving the area of the ellipse

%@? + {l%;ff\% 1 about the line x = & — 4. Use Pap-
pus’ Theorern %0 find the volume, having given the area of the

ellipse A =qrab.

\\
AN ANSWERS TO EXAMINATIONS
e (Eximination I
) sin 6
f_\/ L (@ %cos? ¥ - @ T cosb
1,1 —3xf6+2x—32 9 Jog 2 —
{b)é x2-}—E"( (1—-3x)2') © vz -2t

(© 0xsec(Bxz—Ntan{Bx2—7)

Lo cu. ft./min.

Maz., 3; min., § o
{a) 6400 ft.; (b) — 640 ft./sec.; (c) 40 sec.
. Arc cot G,

o P
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. @) dh = bsec?6d8; (b) —__secacsceda (c) 04 it.
. VA, :

13,

. (@) «; (bY 1.

3 Vit L

ego-qm

1

i

N
Examination II \ :
L (a) -6x(1~'xﬂ)s () —Gcsc32xcot2gf\\
(b} (e) 3x2(1 — a2 — 2(3‘ .r)(x"—]— 1}
x—1 ) — A a5 £ '
() —e=cone= 1+2xy(<r, ¥
2. . N
@ V3 () 1. \\
1.92¢;,
60" X 120’ {long side along the factor;Q>}

i

{a} 0; (&) — 1.

V3 E3 ,‘:w
7. 5T (5)=. &N
O
8. (a) ¢ —§ (b) [aJ _bn@*i
9

C By — 17 = 27an AN
10, x — 14y + 394 2D
'\\,/

Exzamination ﬂi .,
L @ - ;»lbg}w*; xt + [
(b} legr — 1)(x + 2) + e
{er v

2. '%‘a”fsq units.
B.‘ G
,.\)'3“ Ex -
\J & = |
. msx=%§[l—(x;g)-—'(——2;;)f+£c—;—g)j+]

. 6.253 5q. units.
(a)x—|—2y+33—14-—0 (b)%—\/_
, {a) 0.632.

M —1<x=sl
10. ## cu. units,

©® - .
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Examination IV
1 @ — 31 -2 g
() $x —3sin2@x —5) + ¢
{¢) L V2

2, 2+/2 sq. units.

3. g(m/ﬁ — 1} sq. units.

4. 12,300 1w ft.-lbs.

5. 3L &““
652 0

SRR T . ,\\
7. 0.11 ohm. :}
8. Decreasing at the rate of 4% f./min, - ‘3

P
9. tanx=1+2(x~—)+2(x )+3(x—;i)>
B o/ BB {./
10, (@) V = sff "‘f g aﬂd "el};
(b} 2 x%*h cy. units. \ \
o
N
N
RS
/\\é
K\
\ 9
N\
:”’v
¢ \%/
t;\\o
N
O
RN
AN
\./
D)
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SHORT TABLE OF INTEGRALS

. _ gt _ . '“'\
l.fu du—n+l+c, n.;f 1 .5'“':’
. £ )
2, fd——u=logu+c A Ot
\’1
du _1 a-[—bu D
3. fu @+ 6w 10g( )"H A
du - 1 -1 a + BN
4 fu(a—f—bu)z_a(a—l-bu) azlog( ;t\\'+c
du __1 e +
=+ e RV *e
6. fuva T ouan - - 22 = 3pu) ?312“;——__@ + b
7. f“ mdu _ 28 a’.—»‘lBabu + 15 b2ty (g - Em)z
N 105 b
g T b _@(ﬂ%-bu)f __ 2am
8. f bud?ﬁ‘o\\b(Zm—i—B) b(2m+3)f Va + budu
9 f udu (2a—bu)Va+bu
’ Va—i—bw\ 3 b
2 del ) 2(832—4abu+35-u2)va+bu
0. “ o) Va + by
t f:/:&‘f’?ﬁ > 155 te
11, _Z2u"va 4 by 2 am umldy
~.3,\/a+bu bEm+1) T W@m 1) Ve + bu
INT  du 2 a—l—
M$2" :’:‘:‘————-t -1 '—‘—-—
\/: u\/a-}-lm Fan -t ¢ forg < 0
du Va+bu—\f
13 .._=—-—J
Y e v og\/&+bu+\/ e forg>0
du Va o by b@2m — 3)
4, J = — = e = T U
fu"‘\/a-]—bu- alm — Dyt — 2a(m—1)fum— va + b
15. f——————va+budu=2m+af~——du -
u #va + by

212
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" J’Va thudy (et b 8Q2m— 5)fxmdn
. um agim = 1jum+ 2agim—1) -t
17. fvzau-uzduz aVZau-—u?-i- cog-t = ——= +c
18. fz¢V2au —uidy = — —3‘—2-_&-%-—-——-_2“2 V2au — ut
@ —1"3
4- 5 Cos + c A
s w2 an —ut)E »\f K
19, fwfw 2au —utdy = e 3 ‘..s’
+e2mtf um
\\
A e g e )
m.fli@EJQ@ VZau — 8 +acosr ¥ “+c
o1 J“VZ ay —utdu __ (Zau — Wi, M " fvz an — widu
' un T aZm -S)um \%(Zm 3) wr-l
N 3
22. f aif‘:_if? = cos7! +s
23, f = log (u +z£::+xf2au+uf)+c
Zan + \
o4 [~ 2B o TG =W +acot Bt
V2au ~— K\ a
25 '_'_“_'ng::i"_':; - M + c
uvV2 au, -\u“ an

26. f . {?ﬁﬁ‘ di=~Ta vy (o) +(a~b) log (Vatutvotu)+e
27, \f\’— =Vig — u)b +u) +(a+b1sm"\/—+_+c

: b
\28. f\.frg;f‘“;du=— @ tuw —u) — {a+ b sin? a+g+"

. du _ T —L w—a
29, | ®% . =2gin,] +c
f‘\/(u - a)(b — ) b—a

30

tan_l i + G ™

az

31. fa%du zaloga+u+c Z&“<G’
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du 1
2. o L
8 # — gt _2(310 u—l—

%. f(ﬁz + af)r 2(n - l)a [(u2 -+ az)ﬁ T+ @n— 3).[“___52_)?:1]
34, f(uz + a2y — \/m + Elog W +VEET P +

+c, > gt

du T
35. T =l w4V £ g +¢ ¢
: f(u” + aty ( ) A \\
. [ A e @ +VET R
(M2 (32)3— 2 - 2 - . i‘,x
2 2% e — 'N't“.
a7, __zf___ =— . I 2 4 g \
f(zﬁfca?)% Viera o8V —f{\)?‘SH
. - /—__—- I }
33_f du 1=ﬂ110g(£figw_"jr_g‘*)+c v
u(t + @)% @ " )
g 1 e,
39. f - ==sect¥ 4, 2\ N
u(u? — gtys 4 4 _ :\\\\3
0 [t T\
Wt @r . feu U5

+¢

L N
s | @ifm = Vi £~ glog (‘Lt______ ";f?‘irff)

, O
2 aNT
49, fu_dga:\\,g%_@_am_luﬂ

2+ 22’d VLY
43. f(“ “)C“ . uuia2+10g(u+\/u2ia2)+c
44, f(aﬁ’ ?%égdu = EVG” —zﬁ+ngsm*1u + ¢

45, —\—————- -I—C :
e — eyt
7o - _ 4
\/é f(ag _ ug}% @V — 2 +e
A Y N — at
47. m—-—i a*_—-uz“i‘z —1u+c

48. f(ﬂz —~u)idy =¥ (32-3&“)§+3a2u\/__:ﬁ+30 sm—I“-Jr-c

@t — gy = ¥ (2 ut — .93)\;’ —w+ sm-l 4 “ e
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. cmd : E‘.}f
50 e gtz p +c
- i _ br.m
51, )i du = -——alogb +c
21 == fff —
52, fue dase y fatt — 1) + ¢
3. N pa = e - & n=lgzu " )\
5 fue du " afu e i "\\
»& }x'
54, flogud-u=u10gu—-u+c ~N ¥

log u 1
i — g+l _
5§. fu logudu = u | m{n+1)2.+c
- _emlogu 1 e (,
56. fe IoguduAh——a afu du N
. O
: du _ 'x;\"
b7. W—log (log #) +¢ L
- O~
58 fsmudu COS i 4 ¢ ,*:’Zv
§~“‘
5, fcosudu-—smu—i-c ‘:{‘f{“
\Q"*
60. ftanudu logsecu\?;}
81, fcotudu logém\u +¢
62. fsecudu—\mg(secu+tanu)+c
INY
\{ logtan(2+ )+c
gbcuda = log (cscu — cot ) + ¢
P ’“ N = logtan% 4+ ¢
) 2
\/' ” 1 .
o4, |sintudu =% —csin2ute
2 4
65._fsin5udu=—§ccsu(sinﬂu+2)+c
. ' sin2u% , sindu
6. fsm*udu=§u—$n4 + 5 +¢
sm"—lucosu+ 1 sin3 1 du

&7. fsin:ud =
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68, |cos®u du =—+ sm3u+c

68. fcos"udu = §sinu (costu + 2 +e¢

?u . sm2u sin 4

T0. feostudy = 3 + Ty T e
© T Jcostu du =@_T7usm—“+ ;_fcos“—mci'u \{\
T2 f tan® u du = t?agni 11u f tant2 i du i"é \ ~“ :
73. f cot® 4 dy = %’%ﬁ f cot*~2 i du , \‘\”}3 M
sin %

n - ﬂ_—g Gy -
T4 fsechu du = (n—l)cos”lu+ — fscc A0 du

76, fcsc”udu=——cﬂ?f — Q‘csc“2ua‘u
(7 — 1) sin» 11&
cos™- 1u31n””m\+m—1
mn N min
smﬂ‘uoos“‘”u n—1

76. Jcosmusin® wdu = COs™ 2y sin® u dy

T Jeosmusintudy = —

fcosm wsin* 2o dy

ﬁ—*
m-i—?i wm+n
. R __hsln,(”m—i—_n)_ sin (m—ﬂ}u :
78. smmusm_nudu {\?(m‘f')) .(d(m )) + e
79, ,mm—i—iz_e,smm—nu
9 cosmucosnu{:« 2m + ) T A(m—n) +c

. zﬁ_c_oﬂm—l—n)u__c_os(m—n)u
80. |sin mu cos\ %u'du T =y ) ZW +e

81. fusmu\ﬁs =8nu — ucosu + ¢

82. J‘z(\}nua'u=2usmu—(u2——2)cosu+c
"8\3\
N/

84, fucoaudu =cosu -+ usiny + ¢

- m‘[um—z sin'::m du

o2

85. Julcosudu =2ucosu+(u?—2)sinu+c

8.6. f U™ Cos au du =

m(m —1)

u’H cos au dzs
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ot o _ e{@sin ne — » COS Hi)
87. fe“ 8N i g = pognge + e
y e(n sin net + a cos By
§8. fe“ cos nu du = pra + ¢
89. fsm—ladu = ysin1¥ +Va" -+
o &\
90, fc;o’sr1 duvucosdg-‘v’a’--u?+c \\
o a ~\.
¥, ¥ __ @ 2 2 ’\\
91. ftan adu #tan o zlog(a +#) e . O
92, fcot—l % du = ucot 2 4+ g log (¢ + u?) + ¢ \\
‘ “\s/
93. fsec—l du = usec—l— — glog (u +Vvut — K}{{wc
94, fcsc—l p du = tese 2 p +alog{u +Vu2'—‘a:=) +¢
95, fsinhudu:coshu+c “'&/

96,

X
N
N
S
\‘

LW

. ®l

fcoshudu =sinhu +¢ &N
Q‘,“

a7, ftanhudu = logcoshuch
98. fooma du = log({@riz +¢
99, {sechn du —r\gtfanvl e« +¢=tantsinhu+ ¢
100. fcsch:y\‘é}}“-f: log tanh 3 = tantcoshu + ¢
“;ix../
i"\\‘:‘

\s./
\/.
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. Absolute convergence, 184

" ‘Acceleration, angular, 54; compo-
-nénts of, 54; curvilinear motion,
53; rectilinear motion, 52

Addition of series, 188

Algebraic formulae, 1

Alternating series, 184

Analytic geometry, plane, 4; solid, 8

Angle between, curves, 46; lines, 4;
planes, 10; radius vector and tan-
gent, G0

Angular acccleration, 54

Angular velocity, 54

Approximate integration, 138

Approximations, by differentials, 64,
167; in-series, 188, 193

Are, centroid of, 127; differential of,
-67; length of, 112

Area, plane, 107, 142; surface, 119,
176 :

Binomial series, 192
" Binomial theorem, 1, 33

p

OO

Cauchy, integral test of,'l&&\"

Center of mags, compgsite body, 167;
definition of, 126:.0ne"dimensional
mass, 127; twindiniensional mass,
128, 155; th:c@.&menmcnal mass,
130, 156 . L,

Circle of mqa’ture, 70
Compalti@ est, 181 )
Components of, acceleration, 54;
velacity, 54
Continuous function, 25
fivergence, interval of, 186
Convergent series, 178; absolutely,
184; conditionally, 184; tests for,
180 .
Coordinates, cylindrical, 14, 150;
polar, 13: rectanguiar, 13, 14, 150;
spherical, 14, 151
Cosines, direction, 4, 9
Critical points, 47, 170

{The numbers refer to pages)

Critical values, 47, 175
Curvature, center of, 71: circle of, )
70; definition of, 68; radius of, 70’
Curve, area under, 107, 110, 146;
differential of length of, 67; length
of, 112 M\
Curvilinear motion, 53 O
Cylindrical coordinates, 14,150, 156
Definite integral, 10 'x:‘\
Delta-process diffeéchtiation, 30
Dependent variable¥24
Derivative, definition of, 29; direc-
tional, 173} geometric interpreta-
tion (O£ N30, 163; partial, 162;
totah, 168
Differential, approximation by means
o364, 167; definilion of, 63; geo-
e\ Inetric interpretation of, 63, 163;

o of are, 67; total, 162
" Differentiation,

formulae of, 40;
general rule, 30; implicit, 41, 165;
partial, 162; power series, 189;
successive, 42

Direction cosincs, 4, 9

Directional derivative, 173

Divergence of series, 179, 181

Division of series, 189

e (base of natural logarithms), 26, 28,
35

Errors, 64, 167, 188, 193

Evolute, 72

Examination questions, 205

Expansions in series, 190

Extended law of the mean, 75

Factorial notation, 1

Force, total, 125, 160

Function, continuous, 25; definition
of, 24; expansion of, 190; hyper-
bolie, 197

Fundamenta! theorem of the calcu-
fus, 114, 146

219 .

e
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Geometric progression, 179
Geometric series, 179
Geometry, 2

Graphing, principles of, 12
Graphs for reference, 5-23
Greek alphabet, xii
Gyration, radius of, 137

Harmonic motion, 53, b6
Harmonic seties, 181

Hospital, rde of PHospital, 77
Hyperbolic functions, 197

Implicit differentiation, 41, 165

Improper integrai, 104

Increment, 30; approximation of, 64

Indefinite integral, 81

Independent variable, 24

Indetenminate forms, 76

Inertia, moment of, 132, 155

Inflection, point of, 48

Infinite series {s¢e Series)

integral, approximation to definite,
138; definite, 102; double, 142,
149; improper, 104; indefinite, 81;,
tables, 212; triple, 142, 149 &N

Integration, approximate, 138; fdr&
mutae for, 83, 212: fundamenml
theorem, 114, 146; methods of,
87, 90, 95, 100; po\wer\mes. 189

Interval of convergence,\IBG

Law of cosines, 4/

Law of sines, 4N\

Law of the msan, 75; extended, 76

VHospitalgtale, 77

Length gf eutve, 112

Limig,Sdefining e, 26; definition of,
2530l integration, 103; theorems,

L1qu1d pressure, 124, 160

Logarithm, to base ¢, 26, 28, 35

Logarithmic functlon dxfferen‘uatlon
of, 35

Maclaurin’s series, 190
Mass, center of, composite body,
157; one dimensional mass, 127;

two dimensional mass, 128, 155;

three dimensional mass, 130, 156
Maxima and minima, 47, 175
Mesn, extended law of, 76; law of, 75

Moment of inertia, definition of, 132;
one dimensional mass, 133; two
dimensional mags, 133; three di-
mensional mass, 136

Motion, curvilingar, 53; rectilinear,
52; simple harmonic, 53, 56

Multiple integration, 142

Multiplication of series, 188

Normal, length of, 45

Normal component of acce_er'ltlon 4

Normal line, to a plane cu.tve, ydd
to a surface, 168

Normal plane to a skcw cuse, 170

N\

Operations with series) 187

Order of diffetemtiation, 163

Pappus, Lh@r,ems of, 159

Parallel @axis theorem, 158

Paramdthic equations, 13, 34, 53, 72,

15,

Pﬁlftial derivative, 162

Partlal {ractions, integration by, b

.Parts, integration by, 87

© Percentage error, 64, 167

Pi (r), computation of, 196

Plane, normal to a skew curve, 170;
tangent to a surface, 168

Point, of inflection, 48; saddle, 176

Polar coordinates, 60; area in, 111;
length of arc in, 113; moment of
inertia in, 156; rdchus of curvature
in, 71

Polar moment of inertia, 135

Power series, 185

Pressure, 124, 160

Quadratic eguation, 1

- Quiadric surfaces, 10-12

Radian measure, 26, 36

Radius of curvature, 70

Radins of gyration, 137

Radius vector, 13, 60

Rates, related, 57, 172

Ratio of arc to chord, 67

Ratio test, 182

Rational fractions, integration of, 95
Related rates, 57, 172

Relative error, 64, 167



INDEX

22

Remainder, in series, 193
Revolution, surface of, 119
Rolle’s theorem, 76
Rose-leaf curves, 22-23

Saddle point, 176

Sample examinations, 205

Sequence, 178

Series, alternating, 184; computa-
ticn by, 194; definitions con-
cerning, 178; expansions in, 190;
geometrie, 179; harmonic, 181;
Maclaurin’s, 190; power, 185;
properties of, 187; Tavlor's, 192;
tests for convergence of, 180

Simple harmonic motion, 53, 58

Simpson’s rule, 140

Skew curve, 170

Slope of a curve, 30, 44, 61

Solids, general, centroid of, 156;
moment of inertia of, 156; surface
of, 176; volumes of, 149

Solids of revolution, centroid of, 130:
surface of, 119; volume of, 115

Speed, 54

Spherical coordinates, 14, 1561

Straight-line motion, 52

Subnormat, length of, 45

Substitutions in integration, 90,75,

Subtangent, length of, 45

Summary of formulac, diffcréntiation,
40; integration, 83, 218\\

»
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4

\™ as a single integral, 115;

e

Surface area, 119, 176
Symmetry, principles of, 13, 15

Table of integrals, 212
Tangent, length of, 45; slope of, 44
Tangent line to a curve, 44, 170
Tangent plane to a surface, 168
Tangential components of accelera-
Ltion, 54
Tavlor's series, 192
Tests of convergence of series,
Total derivative, 163
Tolal differential, 162
Trapezoidal rule, 138 .\
Trigonometric {unctions~&;, ‘graphs
of, 15; differentiation ef,36; in-
verse, 15, 38 <
Trigonometric sybgtitutions in inte-
gration, 90 Y
Triple integr&i\lﬂz
§ Z

180,

PR |
\

o

£ 3

No/ 3

Untleta(‘nﬁmeﬁ coefficients, 95
NS

Variable, 24
Vélueity, 52, 54
_w¥olume, as a double integral, 14%;
as a
triple integral, 149; of known
cross section, 118; of revolution,
115

Work, 122
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